Vibrational Lifetime of the SCN Protein Label in H2O and D2O Reports Site-Specific Solvation and Structure Changes During PYP’s Photocycle

2019 ◽  
Vol 92 (1) ◽  
pp. 1024-1032 ◽  
Author(s):  
Julian M. Schmidt-Engler ◽  
Larissa Blankenburg ◽  
Bartosz Błasiak ◽  
Luuk J. G. W. van Wilderen ◽  
Minhaeng Cho ◽  
...  
2016 ◽  
Vol 63 (4) ◽  
pp. 549-563
Author(s):  
Paweł Wymysłowski ◽  
Tomasz Zagrajek

AbstractThe paper presents a method of analysis of bone remodelling in the vicinity of implants. The authors aimed at building a model and numerical procedures which may be used as a tool in the prosthesis design process. The model proposed by the authors is based on the theory of adaptive elasticity and the lazy zone concept. It takes into consideration not only changes of the internal structure of the tissue (described by apparent density) but also surface remodelling and changes caused by the effects revealing some features of “creep”. Finite element analysis of a lumbar spinal segment with an artificial intervertebral disc was performed by means of the Ansys system with custom APDL code. The algorithms were in two variants: the so-called siteindependent and site-specific. Resultant density distribution and modified shape of the vertebra are compared for both of them. It is shown that this two approaches predict the bone remodelling in different ways. A comparison with available clinical outcomes is also presented and similarities to the numerical results are pointed out.


Author(s):  
Vinayak P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman

The concept of interfacial width is often invoked in many materials science phenomena which relate to the structure and properties of internal interfaces. The numerical value of interface width is an important input parameter in diffusion equations, sintering theories as well as in many electronic devices/processes. Most often, however, this value is guessed rather than determined or even estimated. In this paper we present a method of determining the effective structural and electronic- structural width of interphase interfaces using low- and core loss fine structure effects in EELS spectra.The specimens used in the study were directionally solidified eutectics (DSEs) in the system; NiO-ZrO2(CaO), NiO-Y2O3 and MnO-ZrO2(ss). EELS experiments were carried out using a VG HB-501 FE STEM and a Hitachi HF-2000 FE TEM.


Author(s):  
Richard D. Powell ◽  
James F. Hainfeld ◽  
Carol M. R. Halsey ◽  
David L. Spector ◽  
Shelley Kaurin ◽  
...  

Two new types of covalently linked, site-specific immunoprobes have been prepared using metal cluster labels, and used to stain components of cells. Combined fluorescein and 1.4 nm “Nanogold” labels were prepared by using the fluorescein-conjugated tris (aryl) phosphine ligand and the amino-substituted ligand in the synthesis of the Nanogold cluster. This cluster label was activated by reaction with a 60-fold excess of (sulfo-Succinimidyl-4-N-maleiniido-cyclohexane-l-carboxylate (sulfo-SMCC) at pH 7.5, separated from excess cross-linking reagent by gel filtration, and mixed in ten-fold excess with Goat Fab’ fragments against mouse IgG (obtained by reduction of F(ab’)2 fragments with 50 mM mercaptoethylamine hydrochloride). Labeled Fab’ fragments were isolated by gel filtration HPLC (Superose-12, Pharmacia). A combined Nanogold and Texas Red label was also prepared, using a Nanogold cluster derivatized with both and its protected analog: the cluster was reacted with an eight-fold excess of Texas Red sulfonyl chloride at pH 9.0, separated from excess Texas Red by gel filtration, then deprotected with HC1 in methanol to yield the amino-substituted label.


Author(s):  
K. Fukushima ◽  
N. Kohyama ◽  
A. Fukami

A film-sealed high resolution environmental cell(E.C) for observing hydrated materials had been developed by us(l). Main specification of the E.C. is as follows: 1) Accelerated voltage; 100 kV. 2) Gas in the E.C.; saturated water vapour with carrier gas of 50 Torr. 3) Thickness of gas layer; 50 μm. 4) Sealing film; evaporated carbon film(20 nm thick) with plastic microgrid. 5) Resolving power; 1 nm. 6) Transmittance of electron beam; 60% at 100 kV. The E.C. had been successfully applied to the study of hydrated halloysite(2) (3). Kaolin minerals have no interlayer water and are basically non-expandable but form intercalation compounds with some specific chemicals such as hydrazine, formamide and etc. Because of these compounds being mostly changed in vacuum, we tried to reveal the structure changes between in wet air and in vacuum of kaolin minerals intercalated with hydrazine and of hydrated state of montmori1lonite using the E.C. developed by us.


Sign in / Sign up

Export Citation Format

Share Document