ansys system
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 7)

H-INDEX

2
(FIVE YEARS 1)

Author(s):  
Vyacheslav Lyashenko ◽  
Diana Rudenko

In The work considers 11 types of gears, features of their design and application. Analysis of gears designs is carried out, since shape of teeth directly affects process of teeth gearing, and this, in turn, affects load, which causes deformation of elements. 3D model of spur gear was created in ANSYS system. The work was limited by analyzing problem from point of view of gear wheels’ deformation, which were made of 40L carbon steel and carbon composite material. As a result, finite element modeling and analysis of gears using ANSYS system was carried out.


Mechanika ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 62-69
Author(s):  
Mateusz WĄSIK ◽  
Krzysztof LEHRICH ◽  
Krzysztof LIS

Static and dynamic properties of machine tools have a decisive influence on their accuracy. In case of HSM machine tools, the phenomena associated with them are additionally strengthened by high machining parameters. In order to predict a machine tool behaviour at the design stage, it is necessary to use numerical methods to simulate for its simulation. Thanks to the use of this type of software, it is possible to perform the next step, i.e. the optimisation of the structure. In case of machine tools, due to the multiplicity of factors affecting its accuracy, this should be a multicriterial optimisation. This article presents the results of a vertical milling centre spindle body optimisation using the Finite Element Method. The results of static stiffness and vibration frequency analysis for three bodies (i.e. the body of the form and dimensions proposed by the constructor, the body after parametric optimisation and the body after the form and parametric optimisation including use of different materials) were compared. The optimisation tools available in the ANSYS system were used for the simulation. The calculations were preceded by experimental research and modifications of dynamic parameters performed on their basis using the author's methodology to determine the behaviour of a partially existing structure for different masses of the body being optimised.  


Author(s):  
Vita Mustika ◽  
Agus Triono ◽  
Koekoeh K. Wibowo

The paper present the result of the study on the use of simulation software of ANSYS R15.0 version in attempt to simulate the load which is working on a screwed shaft of a shaping machine. This shaft was broken down during normal working and within limit of its life time. Therefore, the simulation would try to find out the cause of the failure. In order to simulate the load, the mechanical properties and chemical composition of the shaft were used as the input for modeling. The shaft is made of medium carbon steel of S 45 C in round shape. The finite element method (FEM) was used for analyzing. The modeling was started with a 3D redrafting the real dimension of the shaft in a computer aided design (CAD) model, then imported to the ANSYS system into FEM format. The mechanical and physical properties of the material was entered as the engineering data. Meshing was made to divide the component into several small elements. A combination of static and torsion load was applied to the shaft with a fixed position. The simulation results shown that von mises stress of 4.546 MPa was achieved. While, the first principal stress of 4.518 MPa, the third principal stress of 0.538 MPa. Other result revealed that the displacement was 0.001602 mm. Simulation also indicate that failure occurs at the slot a place where the pin was inserted to lock between the shaft and the bevel gear. The result is in accordance with the real failure of the shaft. To conclude, the ANSYS with FEM modeling has succeeded to simulate the failure of the screwed shaft.


Author(s):  
Vladimir Panchenko ◽  
Sergey Chirskiy ◽  
Valeriy Vladimirovich Kharchenko

The chapter discusses the simulation of thermal operating conditions and the optimization of the design of solar photovoltaic thermal modules. As a realization of the developed method, two photovoltaic thermal modules with one-sided solar cells with one-sided heat removal and two-sided solar cells with two-sided heat removal are presented. The components of the developed models of solar modules must be optimized on the basis of the required indicators of the thermal mode of operation of the modules. For this task, a method has been developed for visualizing thermal processes using the Ansys system of finite element analysis, which has been used to research thermal modes of operation and to optimize the design of the modules created. With the help of the developed method, the temperature fields of the module components, coolant velocity and its flow lines in the developed models of a planar photovoltaic thermal roofing panel and a concentrator photovoltaic thermal two-sided module are visualized.


2020 ◽  
Vol 313 ◽  
pp. 00006
Author(s):  
Martin Psotný

The post buckling of a rectangular slender web in compression has been analyzed. Shapes of a buckling area obtained from the nonlinear analysis have been compared with buckling modes from the linearized problem for various aspect ratios. Effects of initial shape imperfections upon the analysis have been investigated using nonlinear approach. To trace the complete nonlinear equilibrium curves, specialized code based on FEM was created. The Newton-Raphson iteration algorithm was used, load versus displacement control was changed during the process of calculation. Obtained results were verified using Ansys system, in this case arc-length method was activated for overcoming critical points.


2020 ◽  
Vol 1 (1) ◽  
pp. 290-303
Author(s):  
D.A. Saracheva ◽  
◽  
R.I. Vakhitova ◽  
K.R. Urazakov ◽  
◽  
...  
Keyword(s):  

Author(s):  
I. R. Tazeyev ◽  
S. O. Gaponenko ◽  
A. E. Kondratiev ◽  
A. N. Zamaliev

 An imbalance appears during the manufacture, operation and maintenance of power equipment. The rotor imbalance arises due to the unbalanced masses of the rotor which leads to the emergence of variable loads on the supports and bending of the rotor. The dynamic balancing of the rotor on the balancing machine is the way to avoid the negative effects of centrifugal forces. The balancing machines in resonant and soft-bearing modes are usually used on modern production. However, these methods of balancing has a number of shortcoming, which can be solved by using the hard-bearing method. For example, an ability of balancing of products with huge imbalance and increasing the accuracy of balancing. Application of soft-bearing balancing method needs to be added in other ways, taking into account high reqiuirments of the power equipment. A model of a hard-bearing balancing machine was designed for balancing rotors and rotating elements of power equipment. The Autodesk Inventor CAD software was used for modeling of the balancing machine and the rotor. The modal analysis was conducted by using the block method of Lanczos on the basis of the ANSYS system. The main assumption during the modal analysis process was that the form of free fluctuations is calculated in relative units and does not allow to determine absolute shifts. The natural oscillation frequencies of the 3D models of the balancing machine bed and the rotor of the gas turbine engine 16M were calculated to determine the informative frequency range that the rotor should be hard-bearing balanced. 


2017 ◽  
Vol 2017 (1) ◽  
pp. 79-94
Author(s):  
Adam Rosłowicz ◽  
Paweł Bednarczyk

Abstract Design of supersonic H1 rocket by the Rocketry Group of Students’ Space Association (SR SKA) requires an analysis of thermal phenomena occurring in the elements particularly exposed to the high temperature gas. This paper contains a description of the methodology and the results of numerical simulation of heat transfer in the elements of the rocket head. The starting points were the flight conditions (3 characteristic points defined by altitude and Mach number) and independently calculated adiabatic temperature field of the gas. ANSYS Fluent code was used to determine the temperature field on the surface of the rocket. Computed cases were viscous and inviscid flow (for comparison). Based on the results formulated for the viscous case heat transfer boundary conditions, the numerical model and the thermophysical properties of materials were defined. The model was limited to a brass top part of the head and a part of a composite dome. Analytical and empirical method of “intermediate enthalpy” determined distribution of the heat transfer coefficient on the rocket surface. Then the transient heat transfer was calculated with the ANSYS system. It included the range from the rocket launch, moment of maximum Mach number to sufficient structure cooling. The results of the analyses were conclusions relevant to the further development work. Excessive heating of composite structures during the flight has been shown.


Author(s):  
Jozef Havran ◽  
Martin Psotný

Abstract Elastic shallow shell of translation subjected to the external pressure is analysed in the paper numerically by FEM. Nonlinear equilibrium paths are calculated for the different boundary conditions. Special attention is paid to the influence of initial imperfection on the limit load level of fundamental load-displacement path of nonlinear analysis. ANSYS system was used for analysis, arclength method was chosen for obtain fundamental load-displacement path of solution.


Sign in / Sign up

Export Citation Format

Share Document