Enzyme-Activatable Cell-Penetrating Peptides through a Minimal Side Chain Modification

2015 ◽  
Vol 26 (5) ◽  
pp. 850-856 ◽  
Author(s):  
Saskia A. Bode ◽  
Morten B. Hansen ◽  
Roy A. J. F. Oerlemans ◽  
Jan C. M. van Hest ◽  
Dennis W. P. M. Löwik
2015 ◽  
Vol 13 (20) ◽  
pp. 5617-5620 ◽  
Author(s):  
Yosuke Demizu ◽  
Makoto Oba ◽  
Koyo Okitsu ◽  
Hiroko Yamashita ◽  
Takashi Misawa ◽  
...  

A cyclic β-amino acid (APCGu) bearing a side-chain guanidinium group has been developed.


2020 ◽  
Author(s):  
Nicolas A. Abrigo ◽  
Kara Dods ◽  
Koushambi Mitra ◽  
Kaylee Newcomb ◽  
Anthony Le ◽  
...  

<p>The discovery of high-affinity peptides to many intracellular targets has become feasible through the development of diverse macrocyclic peptide libraries. But lack of cell permeability is a key feature hampering the use of these peptides as therapeutics. Here, we develop a set of small, cyclic peptide carriers that efficiently carry cargoes into the cytosol. These peptides are cyclized via side-chain alkylation, which makes them ideal for the creation of diverse mRNA or phage-displayed libraries with intrinsic cell permeability.</p>


2020 ◽  
Author(s):  
Nicolas A. Abrigo ◽  
Kara Dods ◽  
Koushambi Mitra ◽  
Kaylee Newcomb ◽  
Anthony Le ◽  
...  

<p>The discovery of high-affinity peptides to many intracellular targets has become feasible through the development of diverse macrocyclic peptide libraries. But lack of cell permeability is a key feature hampering the use of these peptides as therapeutics. Here, we develop a set of small, cyclic peptide carriers that efficiently carry cargoes into the cytosol. These peptides are cyclized via side-chain alkylation, which makes them ideal for the creation of diverse mRNA or phage-displayed libraries with intrinsic cell permeability.</p>


2021 ◽  
Vol 22 (16) ◽  
pp. 8772
Author(s):  
Hidetomo Yokoo ◽  
Nobumichi Ohoka ◽  
Mami Takyo ◽  
Takahito Ito ◽  
Keisuke Tsuchiya ◽  
...  

Peptide-based target protein degradation inducers called PROTACs/SNIPERs have low cell penetrability and poor intracellular stability as drawbacks. These shortcomings can be overcome by easily modifying these peptides by conjugation with cell penetrating peptides and side-chain stapling. In this study, we succeeded in developing the stapled peptide stPERML-R7, which is based on the estrogen receptor alpha (ERα)-binding peptide PERML and composed of natural amino acids. stPERML-R7, which includes a hepta-arginine motif and a hydrocarbon stapling moiety, showed increased α-helicity and similar binding affinity toward ERα when compared with those of the parent peptide PERML. Furthermore, we used stPERML-R7 to develop a peptide-based degrader LCL-stPERML-R7 targeting ERα by conjugating stPERML-R7 with a small molecule LCL161 (LCL) that recruits the E3 ligase IAPs to induce proteasomal degradation via ubiquitylation. The chimeric peptide LCL-stPERML-R7 induced sustained degradation of ERα and potently inhibited ERα-mediated transcription more effectively than the unstapled chimera LCL-PERML-R7. These results suggest that a stapled structure is effective in maintaining the intracellular activity of peptide-based degraders.


Sign in / Sign up

Export Citation Format

Share Document