scholarly journals Pt2Tl Building Blocks for Two-Dimensional Extended Solids: Synthesis, Crystal Structures, and Luminescence

2017 ◽  
Vol 17 (8) ◽  
pp. 4336-4346 ◽  
Author(s):  
Sara Fuertes ◽  
Andrés J. Chueca ◽  
Antonio Martín ◽  
Violeta Sicilia
Author(s):  
Songwuit Chanthee ◽  
Wikorn Punyain ◽  
Supawadee Namuangrak ◽  
Kittipong Chainok

The crystal structures of the building block tetramethylammonium (2,2′-bipyridine-κ2N,N′)tetracyanidoferrate(III) trihydrate, [N(CH3)4][Fe(CN)4(C10H8N2)]·3H2O, (I), and a new two-dimensional cyanide-bridged bimetallic coordination polymer, poly[[(2,2′-bipyridine-κ2N,N′)di-μ2-cyanido-dicyanido(μ-ethylenediamine-κ2N:N′)(ethylenediamine-κ2N,N′)cadmium(II)iron(II)] monohydrate], [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O, (II), are reported. In the crystal of (I), pairs of [Fe(2,2′-bipy)(CN)4]−units (2,2′-bipy is 2,2′-bipyridine) are linked together through π–π stacking between the pyridyl rings of the 2,2′-bipy ligands to form a graphite-like structure parallel to theabplane. The three independent water molecules are hydrogen-bonded alternately with each other, forming a ladder chain structure withR44(8) andR66(12) graph-set ring motifs, while the disordered [N(CH3)4]+cations lie above and below the water chains, and the packing is stabilized by weak C—H...O hydrogen bonds. The water chains are further linked with adjacent sheets into a three-dimensional networkviaO—H...O hydrogen bonds involving the lattice water molecules and the N atoms of terminal cyanide groups of the [Fe(2,2′-bipy)(CN)4]−building blocks, forming anR44(12) ring motif. Compound (II) features a two-dimensional {[Fe(2,2′-bipy)(CN)4Cd(en)2]}nlayer structure (en is ethylenediamine) extending parallel to (010) and constructed from {[Fe(2,2′-bipy)(CN)4Cd(en)]}nchains interlinked by bridging en ligands at the Cd atoms. Classical O—H...N and N—H...O hydrogen bonds involving the lattice water molecule and N atoms of terminal cyanide groups and the N—H groups of the en ligands are observed within the layers. The layers are further connectedviaπ–π stacking interactions between adjacent pyridine rings of the 2,2′-bipy ligands, completing a three-dimensional supramolecular structure.


2006 ◽  
Vol 4 (3) ◽  
pp. 458-475 ◽  
Author(s):  
Yurii Chumakov ◽  
Yurii Simonov ◽  
Mata Grozav ◽  
Manuela Crisan ◽  
Gabriele Bocelli ◽  
...  

AbstractThe crystal structures of six novel salts of 4-nitrobenzoic acid — namely, 2-hydroxyethylammonium 4-nitrobenzoate (I), 2-hydroxypropylammonium 4-nitrobenzoate (II), 1-(hydroxymethyl)propylammonium 4-nitrobenzoate (III), 3-hydroxypropylammonium 4-nitrobenzoate (IV), bis-(2-hydroxyethylammonium) 4-nitrobenzoate (V), morpholinium 4-nitrobenzoate (VI) — containing the same anion but different cations have been studied. The ionic forms of I-VI serve as building blocks of the supramolecular architecture, and in crystals they are held together via ionic N-H···O and O-H···O hydrogen bonds. In the crystal packing the building blocks of I-III are self-assembled via N-H...O, O-H···O and C-H...O hydrogen bonds to form the chains which are further consolidated into two-dimensional layers by the same type of interactions. In IV-VI the chain-like structures have been generated by building blocks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shota Ono

AbstractSome of the three-dimensional (3D) crystal structures are constructed by stacking two-dimensional (2D) layers. To study whether this geometric concept, i.e., using 2D layers as building blocks for 3D structures, can be applied to computational materials design, we theoretically investigate the dynamical stability of copper-based compounds CuX (a metallic element X) in the B$$_h$$ h and L1$$_1$$ 1 structures constructed from the buckled honeycomb (BHC) structure and in the B2 and L1$$_0$$ 0 structures constructed from the buckled square (BSQ) structure. We demonstrate that (i) if CuX in the BHC structure is dynamically stable, those in the B$$_h$$ h and L1$$_1$$ 1 structures are also stable. Using molecular dynamics simulations, we particularly show that CuAu in the B$$_h$$ h and L1$$_1$$ 1 structures withstand temperatures as high as 1000 K. Although the interrelationship of the metastability between the BSQ and the 3D structures (B2 and L1$$_0$$ 0 ) is not clear, we find that (ii) if CuX in the B2 (L1$$_0$$ 0 ) structure is dynamically stable, that in the L1$$_0$$ 0 (B2) is unstable. This is rationalized by the tetragonal Bain path calculations.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


2021 ◽  
Vol 50 (12) ◽  
pp. 4152-4158
Author(s):  
Kai-Ping Xie ◽  
Si-Guo Wu ◽  
Long-Fei Wang ◽  
Guo-Zhang Huang ◽  
Zhao-Ping Ni ◽  
...  

The first spin-crossover example of a two-dimensional coordination polymer containing [Pd(SCN)4]2− building blocks was explored.


2021 ◽  
Vol 7 (23) ◽  
pp. eabf9402
Author(s):  
Katherine C. Elbert ◽  
William Zygmunt ◽  
Thi Vo ◽  
Corbin M. Vara ◽  
Daniel J. Rosen ◽  
...  

The use of nanocrystal (NC) building blocks to create metamaterials is a powerful approach to access emergent materials. Given the immense library of materials choices, progress in this area for anisotropic NCs is limited by the lack of co-assembly design principles. Here, we use a rational design approach to guide the co-assembly of two such anisotropic systems. We modulate the removal of geometrical incompatibilities between NCs by tuning the ligand shell, taking advantage of the lock-and-key motifs between emergent shapes of the ligand coating to subvert phase separation. Using a combination of theory, simulation, and experiments, we use our strategy to achieve co-assembly of a binary system of cubes and triangular plates and a secondary system involving two two-dimensional (2D) nanoplates. This theory-guided approach to NC assembly has the potential to direct materials choices for targeted binary co-assembly.


2021 ◽  
pp. 113336
Author(s):  
Tatiana Latychevskaia ◽  
Recep Zan ◽  
Sergey Morozov ◽  
Kostya S. Novoselov

2009 ◽  
Vol 9 (9) ◽  
pp. 3989-3996 ◽  
Author(s):  
Daopeng Zhang ◽  
Hailong Wang ◽  
Laijin Tian ◽  
Hui-Zhong Kou ◽  
Jianzhuang Jiang ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 41 (36) ◽  
pp. no-no
Author(s):  
Hu Zhou ◽  
Ai-Hua Yuan ◽  
Su-Yan Qian ◽  
You Song ◽  
Guo-Wang Diao

Sign in / Sign up

Export Citation Format

Share Document