Influence of Fluid Motions on Polymorphic Crystallization of l-Histidine: Taylor Vortex Flow and Turbulent Eddy Flow

2018 ◽  
Vol 18 (2) ◽  
pp. 710-722 ◽  
Author(s):  
Suna Park ◽  
Woo-Sik Kim
1974 ◽  
Vol 96 (1) ◽  
pp. 28-35 ◽  
Author(s):  
R. C. DiPrima ◽  
J. T. Stuart

At sufficiently high operating speeds in lightly loaded journal bearings the basic laminar flow will be unstable. The instability leads to a new steady secondary motion of ring vortices around the cylinders with a regular periodicity in the axial direction and a strength that depends on the azimuthial position (Taylor vortices). Very recently published work on the basic flow and the stability of the basic flow between eccentric circular cylinders with the inner cylinder rotating is summarized so as to provide a unified description. A procedure for calculating the Taylor-vortex flow is developed, a comparison with observed properties of the flow field is made, and formulas for the load and torque are given.


2002 ◽  
Vol 35 (7) ◽  
pp. 692-695 ◽  
Author(s):  
Naoto Ohmura ◽  
Hirokazu Okamoto ◽  
Tsukasa Makino ◽  
Kunio Kataoka

1984 ◽  
Vol 138 ◽  
pp. 21-52 ◽  
Author(s):  
H. Fasel ◽  
O. Booz

For a wide gap (R1/R2= 0.5) and large aspect ratiosL/d, axisymmetric Taylor-vortex flow has been observed in experiments up to very high supercritical Taylor (or Reynolds) numbers. This axisymmetric Taylor-vortex flow was investigated numerically by solving the Navier–Stokes equations using a very accurate (fourth-order in space) implicit finite-difference method. The high-order accuracy of the numerical method, in combination with large numbers of grid points used in the calculations, yielded accurate and reliable results for large supercritical Taylor numbers of up to 100Tac(or 10Rec). Prior to this study numerical solutions were reported up to only 16Tac. The emphasis of the present paper is placed upon displaying and elaborating the details of the flow field for large supercritical Taylor numbers. The flow field undergoes drastic changes as the Taylor number is increased from just supercritical to 100Tac. Spectral analysis (with respect toz) of the flow variables indicates that the number of harmonics contributing substantially to the total solution increases sharply when the Taylor number is raised. The number of relevant harmonics is already unexpectedly high at moderate supercriticalTa. For larger Taylor numbers, the evolution of a jetlike or shocklike flow structure can be observed. In the axial plane, boundary layers develop along the inner and outer cylinder walls while the flow in the core region of the Taylor cells behaves in an increasingly inviscid manner.


1993 ◽  
Vol 48 (1) ◽  
pp. 13-24
Author(s):  
J.F. Hasiuk ◽  
J.D. Iversen ◽  
R.H. Pletcher ◽  
R.G. Hindman

Author(s):  
G B McFadden ◽  
B T Murray ◽  
S R Coriell ◽  
M E Glicksman ◽  
M E Selleck

Sign in / Sign up

Export Citation Format

Share Document