scholarly journals Covalent Functionalization of Nickel Phosphide Nanocrystals with Aryl-Diazonium Salts

Author(s):  
Ian A. Murphy ◽  
Peter S. Rice ◽  
Madison Monahan ◽  
Leo P. Zasada ◽  
Elisa M. Miller ◽  
...  
2021 ◽  
Author(s):  
Ian Murphy ◽  
Peter Rice ◽  
Madison Monahan ◽  
Leo Zasada ◽  
Elisa Miller ◽  
...  

2021 ◽  
Author(s):  
Ian Murphy ◽  
Peter Rice ◽  
Madison Monahan ◽  
Leo Zasada ◽  
Elisa Miller ◽  
...  

Covalent functionalization of Ni2P nanocrystals was demonstrated using aryl-diazonium salts. Spontaneous adsorption of aryl functional groups was observed, with surface coverages ranging from 20-96% depending on the native reactivity of the salt as determined by the aryl substitution pattern. Increased coverage was possible for low reactivity species using a sacrificial reductant. Functionalization was confirmed using thermogravimetric analysis, FTIR and X-ray photoelectron spectroscopy. The structure and energetics of this nanocrystal electrocatalyst system, as a function of ligand coverage, was explored with density functional theory calculations. The Hammett parameter of the surface functional group was found to linearly correlate with the change in Ni and P core-electron binding energies and the nanocrystal’s experimentally and computationally determined work-function. The electrocatalytic activity and stability of the functionalized nanocrystals for hydrogen evolution were also improved when compared to the unfunctionalized material, but a simple trend based on electrostatics was not evident. We used density functional theory to understand this discrepancy and found that H adsorption energies on the covalently functionalized Ni2P also do not follow the electrostatic trend and are predictive descriptors of the experimental results.


Nanoscale ◽  
2020 ◽  
Vol 12 (22) ◽  
pp. 11916-11926 ◽  
Author(s):  
Yuanzhi Xia ◽  
Cristina Martin ◽  
Johannes Seibel ◽  
Samuel Eyley ◽  
Wim Thielemans ◽  
...  

We present an efficient and straightforward covalent functionalization protocol for modification of surface supported graphene and graphite using aqueous reagents.


2018 ◽  
Vol 14 ◽  
pp. 2018-2026 ◽  
Author(s):  
Artur Kasprzak ◽  
Agnieszka Zuchowska ◽  
Magdalena Poplawska

Reactions applying amidation- or esterification-type processes and diazonium salts chemistry constitute the most commonly applied synthetic approaches for the modification of graphene-family materials. This work presents a critical assessment of the amidation and esterification methodologies reported in the recent literature, as well as a discussion of the reactions that apply diazonium salts. Common misunderstandings from the reported covalent functionalization methods are discussed, and a direct link between the reaction mechanisms and the basic principles of organic chemistry is taken into special consideration.


2021 ◽  
Author(s):  
Ian Murphy ◽  
Peter Rice ◽  
Madison Monahan ◽  
Leo Zasada ◽  
Elisa Miller ◽  
...  

Covalent functionalization of Ni2P nanocrystals was demonstrated using aryl-diazonium salts. Spontaneous adsorption of aryl functional groups was observed, with surface coverages ranging from 20-96% depending on the native reactivity of the salt as determined by the aryl substitution pattern. Increased coverage was possible for low reactivity species using a sacrificial reductant. Functionalization was confirmed using thermogravimetric analysis, FTIR and X-ray photoelectron spectroscopy. The structure and energetics of this nanocrystal electrocatalyst system, as a function of ligand coverage, was explored with density functional theory calculations. The Hammett parameter of the surface functional group was found to linearly correlate with the change in Ni and P core-electron binding energies and the nanocrystal’s experimentally and computationally determined work-function. The electrocatalytic activity and stability of the functionalized nanocrystals for hydrogen evolution were also improved when compared to the unfunctionalized material, but a simple trend based on electrostatics was not evident. Density functional theory was used to understand this discrepancy, revealing that H adsorption energies on the covalently functionalized Ni2P also do not follow the electrostatic trend and are predictive descriptors of the experimental results.


Nanoscale ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 2972-2981
Author(s):  
Lakshya Daukiya ◽  
Joan Teyssandier ◽  
Samuel Eyley ◽  
Salim El Kazzi ◽  
Miriam Candelaria Rodríguez González ◽  
...  

Controlled covalent functionalization of MoS2 by chemical reduction.


2019 ◽  
Author(s):  
Clara M. Agapie ◽  
Melissa Sampson ◽  
William Gee

The work describes a new chemical means of visualising latent fingerprints (fingermarks) using tropolone. Tropolone reacts with amino acids within the fingermark residue to form adducts that absorb UV radiation. These adducts provide useful contrast on highly-fluorescent prous surfaces will illuminated with UV radiation. The conjugated seven-membered ring of the tropolone adduct can be reacted further diazonium salts, which is demonstrated here with formation of two dyes. The methodology is extremely rapid, occurring in minutes with mild heating, and can be applied before ninhydrin in a chemical detection sequence. <br>


1949 ◽  
Vol 68 (5) ◽  
pp. 426-429 ◽  
Author(s):  
J. de Jonge ◽  
R. Dijkstra
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document