core electron
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 38)

H-INDEX

51
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
D. Mayer ◽  
F. Lever ◽  
D. Picconi ◽  
J. Metje ◽  
S. Alisauskas ◽  
...  

AbstractThe conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.


Author(s):  
Emmanuele Peluso ◽  
Michela Gelfusa ◽  
Teddy Craciunescu ◽  
Luca Martellucci ◽  
Pasquale Gaudio ◽  
...  

Abstract Bolometric tomography is a widely applied technique to infer important indirect quantities in magnetically confined plasmas, such as the total radiated power. However, being an inverse and ill-posed problem, the tomographic algorithms have to be carefully steered to converge on the most approriate solutions and often specialists have to balance the quality of the obtained reconstructions between the core and the edge of the plasma. Given the topology of the emission and the layout of the diagnostics in practically all devices, the tomographic inversions of bolometry are often affected by artefacts, which can influence derived quantities and specific studies based on the reproduced tomograms, such as power balance studies and benchmarching of gyrokinetic simulations. This article deals with the introduction of a simple, but very efficient methodology. It is based on constraining the solution of the tomographic inversions by using a specific estimate of the initial solution, built with the data from specific combinations of detectors (called ‘masks’). It has been tested with phantoms and with real data, using the Maximum Likelihood approach at JET. Results show how the obtained tomograms improve sensibly both in the core and at the edge of the device when compared with those obtained without the use of masks as initial guess. The correction for the main artefacts can have a significant impact on the interpretation of both the core (electron transport, alpha heating) and the edge physics (detachment , SOL). The method is completely general and can be applied by any iterative algorithm starting from an initial guess for the emission profile to be reconstructed.


2021 ◽  
Author(s):  
Alessandro Soloperto ◽  
Deborah Quaglio ◽  
Paola Baiocco ◽  
Isabella Romeo ◽  
Mattia Mori ◽  
...  

Abstract Numerous studies have shown a strong correlation between the number of neurofibrillary tangles of the tau protein and Alzheimer's disease progression, making the quantitative detection of tau very promising from a clinical point of view. However, the lack of highly reliable fluorescent probes for selective imaging of tau neurofibrillary tangles is a major challenge due to sharing similar β−sheet motifs with homologous Amyloid-β fibrils. In the current work, we describe the rational design and the in silico evaluation of a small-size focused library of fluorescent probes, consisting of a BODIPY core (electron acceptor) featuring highly conjugated systems (electron donor) with a length in the range 13-19 Å at C3. Among the most promising probes in terms of binding mode, theoretical affinity and polarity, BT1 has been synthesized and tested in vitro onto human induced pluripotent stem cells derived neuronal cell cultures. The probe showed excellent photophysical properties and high selectivity allowing in vitro imaging of hyperphosphorylated tau protein filaments with minimal background noise. Our findings offer new insight into the structure-activity relationship of this class of tau selective fluorophores, paving the way for boosting tau tangle detection in patients possibly through retinal spectral scans.


Author(s):  
Chris Walsh ◽  
Ricardo Florido ◽  
Mathieu Bailly-Grandvaux ◽  
Francisco Suzuki-Vidal ◽  
Jeremy P Chittenden ◽  
...  

Abstract This paper uses extended-magnetohydrodynamics (MHD) simulations to explore an extreme magnetized plasma regime realisable by cylindrical implosions on the OMEGA laser facility. This regime is characterized by highly compressed magnetic fields (greater than 10kT across the fuel), which contain a significant proportion of the implosion energy and induce large electrical currents in the plasma. Parameters governing the different magnetization processes such as Ohmic dissipation and suppression of instabilities by magnetic tension are presented, allowing for optimization of experiments to study specific phenomena. For instance, a dopant added to the target gas-fill can enhance magnetic flux compression while enabling spectroscopic diagnosis of the imploding core. In particular, the use of Ar K-shell spectroscopy is investigated by performing detailed non-LTE atomic kinetics and radiative transfer calculations on the MHD data. Direct measurement of the core electron density and temperature would be possible, allowing for both the impact of magnetization on the final temperature and thermal pressure to be obtained. By assuming the magnetic field is frozen into the plasma motion, which is shown to be a good approximation for highly magnetized implosions, spectroscopic diagnosis could be used to estimate which magnetization processes are ruling the implosion dynamics; for example, a relation is given for inferring whether thermally-driven or current-driven transport is dominating.


2021 ◽  
Author(s):  
Ian Murphy ◽  
Peter Rice ◽  
Madison Monahan ◽  
Leo Zasada ◽  
Elisa Miller ◽  
...  

Covalent functionalization of Ni2P nanocrystals was demonstrated using aryl-diazonium salts. Spontaneous adsorption of aryl functional groups was observed, with surface coverages ranging from 20-96% depending on the native reactivity of the salt as determined by the aryl substitution pattern. Increased coverage was possible for low reactivity species using a sacrificial reductant. Functionalization was confirmed using thermogravimetric analysis, FTIR and X-ray photoelectron spectroscopy. The structure and energetics of this nanocrystal electrocatalyst system, as a function of ligand coverage, was explored with density functional theory calculations. The Hammett parameter of the surface functional group was found to linearly correlate with the change in Ni and P core-electron binding energies and the nanocrystal’s experimentally and computationally determined work-function. The electrocatalytic activity and stability of the functionalized nanocrystals for hydrogen evolution were also improved when compared to the unfunctionalized material, but a simple trend based on electrostatics was not evident. Density functional theory was used to understand this discrepancy, revealing that H adsorption energies on the covalently functionalized Ni2P also do not follow the electrostatic trend and are predictive descriptors of the experimental results.


2021 ◽  
Vol 12 (38) ◽  
pp. 9353-9359
Author(s):  
J. Matthias Kahk ◽  
Georg S. Michelitsch ◽  
Reinhard J. Maurer ◽  
Karsten Reuter ◽  
Johannes Lischner

2021 ◽  
Author(s):  
Ian Murphy ◽  
Peter Rice ◽  
Madison Monahan ◽  
Leo Zasada ◽  
Elisa Miller ◽  
...  

Covalent functionalization of Ni2P nanocrystals was demonstrated using aryl-diazonium salts. Spontaneous adsorption of aryl functional groups was observed, with surface coverages ranging from 20-96% depending on the native reactivity of the salt as determined by the aryl substitution pattern. Increased coverage was possible for low reactivity species using a sacrificial reductant. Functionalization was confirmed using thermogravimetric analysis, FTIR and X-ray photoelectron spectroscopy. The structure and energetics of this nanocrystal electrocatalyst system, as a function of ligand coverage, was explored with density functional theory calculations. The Hammett parameter of the surface functional group was found to linearly correlate with the change in Ni and P core-electron binding energies and the nanocrystal’s experimentally and computationally determined work-function. The electrocatalytic activity and stability of the functionalized nanocrystals for hydrogen evolution were also improved when compared to the unfunctionalized material, but a simple trend based on electrostatics was not evident. We used density functional theory to understand this discrepancy and found that H adsorption energies on the covalently functionalized Ni2P also do not follow the electrostatic trend and are predictive descriptors of the experimental results.


Author(s):  
Joseph E. Borovsky ◽  
Jasper S. Halekas ◽  
Phyllis L. Whittlesey

Time-series measurements of the number density ncore and temperature Tcore of the core-electron population of the solar wind are examined at 1 AU and at 0.13 AU using measurements from the WIND and Parker Solar Probe spacecraft, respectively. A statistical analysis of the ncore and Tcore measurements at 1 AU finds that the core-electron spatial structure of the solar wind is related to the magnetic-flux-tube structure of the solar wind; this electron structure is characterized by jumps in the values of ncore and Tcore when passing from one magnetic flux tube into the next. The same types of flux-tube jumps are seen for Tcore at 0.13 AU. Some models of the interplanetary electrical potential of the heliosphere predict that Tcore is a direct measure of the local electrical potential in the heliosphere. If so, then jumps seen in Tcore represent jumps in the electrical potential from flux tube to flux tube. This may imply that the interplanetary electrical potential (and its effect on the radial evolution away from the Sun of solar-wind ions and electrons) independently operates in each flux tube of the heliosphere.


Sign in / Sign up

Export Citation Format

Share Document