Molecular Behaviors on Asphaltenes during Atmospheric Residue Hydrodesulfurization

Author(s):  
Cho-I Park ◽  
Kyeongseok Oh ◽  
Xiaoliang Ma ◽  
Eunji Cho ◽  
Young-Durk Park ◽  
...  
Keyword(s):  
2019 ◽  
Vol 17 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Galina S. Pevneva ◽  
Natalya G. Voronetskaya ◽  
Nikita N. Sviridenko ◽  
Anatoly K. Golovko

AbstractThe paper presents the results of investigation of changes in the composition of hydrocarbons and sulfur-containing compounds of an atmospheric residue in the course of cracking in the presence of a tungsten carbide–nickel–chromium (WC/Ni–Cr) catalytic additive and without it. The cracking is carried out in an autoclave at 500 °C for 30 min. The addition of the WC/Ni–Cr additive promotes the deepening of reactions of destruction not only of resins and asphaltenes, but also high molecular weight naphthene-aromatic compounds of the atmospheric residue. It is shown that the content of low molecular weight C9–C17 n-alkanes and C9–C10 alkylbenzenes rose sharply in the products of cracking with addition of WC/Ni–Cr in comparison with those produced without the additive. Alkyl- and naphthene-substituted aromatic hydrocarbons of benzene, naphthalene, phenanthrene series, polyarenes, benzo- and dibenzothiophenes are identified.


2010 ◽  
Vol 50 (2) ◽  
pp. 164-166
Author(s):  
Kh. I. Abad-zade ◽  
A. D. Kuliev ◽  
G. S. Mukhtarova ◽  
M. E. Guseinova ◽  
Kh. G. Gadirov
Keyword(s):  

2021 ◽  
Vol 21 (5) ◽  
pp. 331-360
Author(s):  
E. V. Parkhomchuk ◽  
K. V. Fedotov ◽  
A. I. Lysikov ◽  
A. V. Polykhin ◽  
E. E. Vorobyeva ◽  
...  

A technology for catalytic hydroprocessing of oil residues – atmospheric residue and vacuum residue – aimed to obtain high value added petrochemicals, particularly marine fuel complying with modern technical and environmental requirements, is reported. The technologyis based on the use of catalysts supported on alumina with a hierarchical structure of meso- and macropores, which are highly active and stable under severe conditions of the process. Data obtained by physicochemical analysis of the chemical composition, textural and phase properties of fresh and spent catalysts for the three-step hydroprocessing of atmospheric residue and vacuum residue are presented. A material balance for each step of the processes and a comprehensive analysis of the properties of produced petrochemicals were used to propose variants of implementing and integrating the technology at Russian oil refineries in order to increase the profit from oil refining. The introduction of the hydroprocessing of atmospheric residue at oil refineries without secondary processes will improve the economic efficiency due to selling the atmospheric residue by 84–170 % depending on a chosen scheme of the process and a required set of products. It is reasonable to integrate the catalytic hydroprocessing of vacuum residue with the delayed coking, catalytic cracking and hydrocracking processes in order to increase the depth of refining to 95 % and extend the production of marketable oil refining products: gasoline, diesel fuel, marine fuel with the sulfur content below 0.5 %, and low-sulfur refinery coke for the electrode industry. The integration of the hydroprocessing of vacuum residue with the secondary processes will increase the economic efficiency from selling the vacuum residue by a factor of 2–2.5 in comparison with its production in delayed coking units.


2019 ◽  
Vol 192 ◽  
pp. 87-95 ◽  
Author(s):  
Xinge Shi ◽  
Zhenyu Liu ◽  
Hong Nie ◽  
Qingya Liu ◽  
Lei Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document