catalytic additive
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Marcin Tkaczyk ◽  
Zbigniew J. Sroka ◽  
Konrad Krakowian ◽  
Radoslaw Wlostowski

Fuel catalytic additives have been tested for many years. Herein, their influence on the overall efficiency of combustion engines is investigated, and their pro-ecological impact is assessed. The majority of this research concerns diesel engines. Despite many advantages, to this day, the use of catalytic additives has not become widespread. Wishing to clarify the situation, a research group from the Wroclaw University of Science and Technology decided to investigate this matter, starting with verification tests. This article presents the methodology and results of testing an actual diesel engine, and evaluates the effects of the use of a fuel catalytic additive. The focus was on the analysis of fuel consumption and exhaust gas emissions from a Doosan MD196TI engine. The tested additive was a commercial fuel performance catalyst (FAMAX) with up to 5% ferric chloride as an organometallic compound. The proportion of the mixture with the fuel was 1:2000. These studies provide an energy and ecological assessment of propulsion in inland vehicles relative to current exhaust emission standards. The tests were carried out in accordance with the ISO 8178 standard, albeit on a much broader scale regarding engine operation than required by the standard. In this way, a set of previously published data was more than doubled in scope. Detailed conclusions indicate the positive effect of the tested fuel additive. The emission values decreased, on average by 16.7% for particulate matter (PM), 10.1% for carbon monoxide (CO), and 7.9% for total hydrocarbons (THC). Unfortunately, the amount of nitrogen oxides (NOx) increased by 1.2%. The average difference in specific fuel consumption (BSFC) between the fuel with additive and pure diesel fuel was 0.5%, i.e. below the level of measurement error. The authors formulated the following scientific relationship between the thermal efficiency of the engine and the operation of the catalyst: the effect of the catalyst on the combustion process decreases with the increase of the thermodynamic efficiency of the engine. This conclusion indicates that despite the proven positive effect of catalysts on the combustion process, they can only be used in markets where engines with low thermal efficiency are used, i.e., older generation engines.


2019 ◽  
Vol 17 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Galina S. Pevneva ◽  
Natalya G. Voronetskaya ◽  
Nikita N. Sviridenko ◽  
Anatoly K. Golovko

AbstractThe paper presents the results of investigation of changes in the composition of hydrocarbons and sulfur-containing compounds of an atmospheric residue in the course of cracking in the presence of a tungsten carbide–nickel–chromium (WC/Ni–Cr) catalytic additive and without it. The cracking is carried out in an autoclave at 500 °C for 30 min. The addition of the WC/Ni–Cr additive promotes the deepening of reactions of destruction not only of resins and asphaltenes, but also high molecular weight naphthene-aromatic compounds of the atmospheric residue. It is shown that the content of low molecular weight C9–C17 n-alkanes and C9–C10 alkylbenzenes rose sharply in the products of cracking with addition of WC/Ni–Cr in comparison with those produced without the additive. Alkyl- and naphthene-substituted aromatic hydrocarbons of benzene, naphthalene, phenanthrene series, polyarenes, benzo- and dibenzothiophenes are identified.


2019 ◽  
Vol 177 (2) ◽  
pp. 3-6
Author(s):  
Marcin TKACZYK ◽  
Maria SKRĘTOWICZ ◽  
Konrad KRAKOWIAN

In the paper researches of influence of using catalyst and polar additives on engine performance and emission of exhaust were carried out. The tests were made on diesel engine DuraTorq-TDDi/TDCi 16v with a capacity of 1998cm3 produced by Ford company. Two additives were investigated: FMAX – catalytic additive to fuel and HDOS – polar additive to lubricating oil in different proportions. The results indicated that using tested additives has a positive effect on exhaust composition (lower concentrations of nitrogen oxides, soot and carbon monoxide) and also decreased fuel consumption.


2018 ◽  
Vol 54 (4) ◽  
pp. 283-291 ◽  
Author(s):  
S. A. Kurta ◽  
I. M. Mykytyn ◽  
O. M. Khatsevich ◽  
V. S. Ribun
Keyword(s):  

2018 ◽  
Vol 1 (8) ◽  
pp. 4227-4235 ◽  
Author(s):  
Nuri Hohn ◽  
Steffen J. Schlosser ◽  
Lorenz Bießmann ◽  
Lin Song ◽  
Sebastian Grott ◽  
...  

2017 ◽  
Vol 42 (39) ◽  
pp. 24877-24884 ◽  
Author(s):  
D. Elets ◽  
I. Chernov ◽  
A. Voyt ◽  
I. Shikin ◽  
M. Dobrotvorskii ◽  
...  

2006 ◽  
Vol 915 ◽  
Author(s):  
E. Rossinyol ◽  
A. Prim ◽  
E. Pellicer ◽  
J. Arbiol ◽  
F. Peiró ◽  
...  

AbstractNanostructured tungsten oxide synthesized from SiO2 templates (SBA-15 and KIT-6) has been used for NO2 gas sensing. Chromium has been added as catalytic additive to WO3 in order to enhance sensor response. Several techniques have been used for identifying both additive location in the tungsten oxide matrix and its oxidation state. Raman spectroscopy confirmed the presence of terminal chromium-oxygen bonds at the material surface. Besides, X-ray photoelectron spectroscopy showed chromium peaks attributable to Cr(III) species. Electrical behavior of pure WO3 has found to be highly dependent on the nanostructure type, i. e. 2D SBA-15 and 3D KIT-6 replicas. Chromium addition diminishes response time and improves sensor response at low NO2 concentrations. Electrical differences due to WO3 nanostructure disappears as a result of additive introduction in the material.


Sign in / Sign up

Export Citation Format

Share Document