A Mini Review of Biochemical Conversion of Algal Biorefinery

Author(s):  
R. Yukesh Kannah ◽  
S. Kavitha ◽  
J. Rajesh Banu ◽  
Palani Sivashanmugam ◽  
M. Gunasekaran ◽  
...  
2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


Author(s):  
Samuel O. Dahunsi ◽  
Solomon Oranusi ◽  
Vincent E. Efeovbokhan ◽  
Soraya Zahedi ◽  
John O. Ojediran ◽  
...  

2017 ◽  
Vol 60 (4) ◽  
pp. 1025-1033
Author(s):  
Alicia A. Modenbach ◽  
Sue E. Nokes ◽  
Michael D. Montross ◽  
Barbara L. Knutson

Abstract. High-solids lignocellulosic pretreatment using NaOH followed by high-solids enzymatic hydrolysis was evaluated for an on-farm biochemical conversion process. Increasing the solids loadings for these processes has the potential for increasing glucose concentrations and downstream ethanol production; however, sequential processing at high-solids loading similar to an on-farm cellulose conversion system has not been studied. This research quantified the effects of high-solids pretreatment with NaOH and subsequent high-solids enzymatic hydrolysis on cellulose conversion. As expected, conversion efficiency was reduced; however, the highest glucose concentration (40.2 g L-1), and therefore the highest potential ethanol concentration, resulted from the high-solids combined pretreatment and hydrolysis. Increasing the enzyme dosage improved cellulose conversion from 9.6% to 36.8% when high-solids loadings were used in both unit operations; however, increasing NaOH loading and pretreatment time did not increase the conversion efficiency. The enzyme-to-substrate ratio had a larger impact on cellulose conversion than the NaOH pretreatment conditions studied, resulting in recommendations for an on-farm bioconversion system. Keywords: Corn stover, Enzymatic hydrolysis, Enzyme loading, High solids, Low solids, Sodium hydroxide.


2020 ◽  
Vol 261 ◽  
pp. 114420 ◽  
Author(s):  
Yimin Chen ◽  
Changan Xu ◽  
Seetharaman Vaidyanathan

Sign in / Sign up

Export Citation Format

Share Document