cellulose conversion
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 48)

H-INDEX

22
(FIVE YEARS 5)

Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-11
Author(s):  
Oleg Manaenkov ◽  
Yuriy Kosivtsov ◽  
Valentin Sapunov ◽  
Olga Kislitsa ◽  
Mikhail Sulman ◽  
...  

Despite numerous works devoted to the cellulose hydrogenolysis process, only some of them describe reaction kinetics. This is explained by the complexity of the process and the simultaneous behavior of different reactions. In this work, we present the results of the kinetic study of glucose hydrogenolysis into ethylene- and propylene glycols in the presence of Ru@Fe3O4/HPS catalyst as a part of the process of catalytic conversion of cellulose into glycols. The structure of the Ru-containing magnetically separable Ru@Fe3O4/HPS catalysts supported on the polymeric matrix of hypercrosslinked polystyrene was studied to propose the reaction scheme. As a result of this study, a formal description of the glucose hydrogenolysis process into glycols was performed. Based on the data obtained, the mathematical model of the glucose hydrogenolysis kinetics in the presence of Ru@Fe3O4/HPS was developed and the parameter estimation was carried out. The synthesized catalyst was found to be characterized by the enhanced magnetic properties and higher catalytic activity in comparison with previously developed catalytic systems (i.e., on the base of SiO2). The summarized selectivity towards the glycols formation was found to be ca. 42% at 100% of the cellulose conversion in the presence of Ru@Fe3O4/HPS.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1359
Author(s):  
Tatiana B. Medvedeva ◽  
Olga L. Ogorodnikova ◽  
Irina S. Yakovleva ◽  
Lyubov A. Isupova ◽  
Oxana P. Taran ◽  
...  

The one-pot hydrolysis-dehydration of activated microcrystalline cellulose was studied in pure hydrothermal water at 453 K over ZrO2 catalysts produced by thermodegradation, microwave treatment, mechanical activation, and sol–gel methods and spent without any co-catalyst. ZrO2 prepared by microwave treatment was more active compared to ones derived by other methods. The catalyst calcination temperature also impacted reactivity. The cellulose conversion increased simultaneously with acidity and SBET, which in turn were set by the preparation method and calcination temperature. Phase composition did not affect the activity. Yields of glucose and 5-HMF reaching 18 and 15%, respectively, were over the most promising ZrO2 prepared by microwave treatment at 593 K. To our knowledge, this ZrO2 sample provided the highest activity in terms of TOF values (15.1 mmol g−1 h−1) compared to the pure ZrO2 systems reported elsewhere. High stability of ZrO2 derived by microwave irradiation was shown in five reaction runs.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1343
Author(s):  
Mpho S. Mafa ◽  
Brett I. Pletschke ◽  
Samkelo Malgas

Lignocellulose has economic potential as a bio-resource for the production of value-added products (VAPs) and biofuels. The commercialization of biofuels and VAPs requires efficient enzyme cocktail activities that can lower their costs. However, the basis of the synergism between enzymes that compose cellulolytic enzyme cocktails for depolymerizing lignocellulose is not understood. This review aims to address the degree of synergism (DS) thresholds between the cellulolytic enzymes and how this can be used in the formulation of effective cellulolytic enzyme cocktails. DS is a powerful tool that distinguishes between enzymes’ synergism and anti-synergism during the hydrolysis of biomass. It has been established that cellulases, or cellulases and lytic polysaccharide monooxygenases (LPMOs), always synergize during cellulose hydrolysis. However, recent evidence suggests that this is not always the case, as synergism depends on the specific mechanism of action of each enzyme in the combination. Additionally, expansins, nonenzymatic proteins responsible for loosening cell wall fibers, seem to also synergize with cellulases during biomass depolymerization. This review highlighted the following four key factors linked to DS: (1) a DS threshold at which the enzymes synergize and produce a higher product yield than their theoretical sum, (2) a DS threshold at which the enzymes display synergism, but not a higher product yield, (3) a DS threshold at which enzymes do not synergize, and (4) a DS threshold that displays anti-synergy. This review deconvolutes the DS concept for cellulolytic enzymes, to postulate an experimental design approach for achieving higher synergism and cellulose conversion yields.


Fuel ◽  
2021 ◽  
Vol 303 ◽  
pp. 121266
Author(s):  
Zhuqian Xiao ◽  
Wenwen Zhao ◽  
Xingyi Wu ◽  
Chuang Xing ◽  
Jianbing Ji ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
SAHELI GHOSAL ◽  
JAYATI BHOWAL

Abstract The present study investigated the usefulness of flaxseed meals as a novel feedstock for the production of bioethanol. The proximate composition of the flaxseed meal was carried out before the pretreatment of the flaxseed meal. In this study, flaxseed meal was pretreated with dilute acid, alkali, and aqueous for disruption of lignocellulosic compounds. The acid pretreated flaxseed meal was used for enzymatic hydrolysis by different enzymes (cellulase, α-amylase, and cellulase combined with α-amylase) for better release of reducing sugar. The cellulose conversion to reducing sugar was significantly higher for acid pretreated flaxseed meals. After enzymatic hydrolysis with cellulase, cellulose conversions to reducing sugars were found to be significantly higher than those of α-amylase and cellulase combined with α-amylase. The bioethanol production was also investigated. The fermentation process was carried out by using baker’s yeast (Saccharomyces cerevisiae) with the acid pretreated flaxseed meal enzymatic hydrolyzate. Maximum ethanol production (0.11 g/l) was achieved from the fermented medium obtained from the acid pretreated flaxseed meal followed by enzymatic hydrolysis by using cellulase enzyme. The structural analysis of bioethanol was also investigated by FTIR.


2021 ◽  
Author(s):  
Alexandru Dumitrache ◽  
Gideon M. Wolfaardt ◽  
David Grant Allen ◽  
Steven N. Liss ◽  
Lee R. Lynd

Background Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics. Results We showed the spatial heterogeneity of fiber distribution in pure cellulosic sheets, which made direct measurements of biofilm colonization and surface penetration impossible. Therefore, we utilized on-line measurements of carbon dioxide (CO2) production in continuous-flow reactors, in conjunction with confocal imaging, to observe patterns of biofilm invasion and to indirectly estimate microbial accessibility to the substrate’s surface and the resulting limitations on conversion kinetics. A strong positive correlation was found between cellulose consumption and CO2 production (R2 = 0.996) and between surface area and maximum biofilm activity (R2 = 0.981). We observed an initial biofilm development rate (0.46 h-1, 0.34 h-1 and 0.33 h-1) on Whatman sheets (#1, #598 and #3, respectively) that stabilized when the accessible surface was maximally colonized. The results suggest that cellulose conversion kinetics is initially subject to a microbial limitation period where the substrate is in excess, followed by a substrate limitation period where cellular mass, in the form of biofilms, is not limiting. Accessible surface area acts as an important determinant of the respective lengths of these two distinct periods. At end-point fermentation, all sheets were digested predominantly under substrate accessibility limitations (e.g., up to 81% of total CO2 production for Whatman #1). Integration of CO2 production rates over time showed Whatman #3 underwent the fastest conversion efficiency under microbial limitation, suggestive of best biofilm penetration, while Whatman #1 exhibited the least recalcitrance and the faster degradation during the substrate limitation period. Conclusion The results showed that the specific biofilm development rate of cellulolytic bacteria such as C. thermocellum has a notable effect on overall reactor kinetics during the period of microbial limitation, when ca. 20% of cellulose conversion occurs. The study further demonstrated the utility of on-line CO2 measurements as a method to assess biofilm development and substrate digestibility pertaining to microbial solubilization of cellulose, which is relevant when considering feedstock pre-treatment options.


2021 ◽  
Author(s):  
Alexandru Dumitrache ◽  
Gideon M. Wolfaardt ◽  
David Grant Allen ◽  
Steven N. Liss ◽  
Lee R. Lynd

Background Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics. Results We showed the spatial heterogeneity of fiber distribution in pure cellulosic sheets, which made direct measurements of biofilm colonization and surface penetration impossible. Therefore, we utilized on-line measurements of carbon dioxide (CO2) production in continuous-flow reactors, in conjunction with confocal imaging, to observe patterns of biofilm invasion and to indirectly estimate microbial accessibility to the substrate’s surface and the resulting limitations on conversion kinetics. A strong positive correlation was found between cellulose consumption and CO2 production (R2 = 0.996) and between surface area and maximum biofilm activity (R2 = 0.981). We observed an initial biofilm development rate (0.46 h-1, 0.34 h-1 and 0.33 h-1) on Whatman sheets (#1, #598 and #3, respectively) that stabilized when the accessible surface was maximally colonized. The results suggest that cellulose conversion kinetics is initially subject to a microbial limitation period where the substrate is in excess, followed by a substrate limitation period where cellular mass, in the form of biofilms, is not limiting. Accessible surface area acts as an important determinant of the respective lengths of these two distinct periods. At end-point fermentation, all sheets were digested predominantly under substrate accessibility limitations (e.g., up to 81% of total CO2 production for Whatman #1). Integration of CO2 production rates over time showed Whatman #3 underwent the fastest conversion efficiency under microbial limitation, suggestive of best biofilm penetration, while Whatman #1 exhibited the least recalcitrance and the faster degradation during the substrate limitation period. Conclusion The results showed that the specific biofilm development rate of cellulolytic bacteria such as C. thermocellum has a notable effect on overall reactor kinetics during the period of microbial limitation, when ca. 20% of cellulose conversion occurs. The study further demonstrated the utility of on-line CO2 measurements as a method to assess biofilm development and substrate digestibility pertaining to microbial solubilization of cellulose, which is relevant when considering feedstock pre-treatment options.


Sign in / Sign up

Export Citation Format

Share Document