Time-Resolved Cost Analysis of Natural Gas Power Plant Conversion to Bioenergy with Carbon Capture and Storage to Support Net-Zero Emissions

2020 ◽  
Vol 54 (23) ◽  
pp. 15338-15346
Author(s):  
Evan Sproul ◽  
Jay Barlow ◽  
Jason C. Quinn
2020 ◽  
Vol 35 (7) ◽  
pp. 627-634
Author(s):  
Karen Turner ◽  
Antonios Katris ◽  
Julia Race

Many nations have committed to midcentury net zero carbon emissions targets in line with the 2015 Paris Agreement. These require systemic transition in how people live and do business in different local areas and regions within nations. Indeed, in recognition of the climate challenge, many regional and city authorities have set their own net zero targets. What is missing is a grounded principles framework to support what will inevitably be a range of broader public policy actions, which must in turn consider pathways that are not only technically, but economically, socially and politically feasible. Here, we attempt to stimulate discussion on this issue. We do so by making an initial proposition around a set of generic questions that should challenge any decarbonisation action, using the example of carbon capture and storage to illustrate the importance and complexity of ensuring feasibility of actions in a political economy arena. We argue that this gives rise to five fundamental ‘Net Zero Principles’ around understanding of who really pays and gains, identifying pathways that deliver growing and equitable prosperity, some of which can deliver near-term economic returns, while avoiding outcomes that simply involve ‘off-shoring’ of emissions, jobs and gross domestic product.


Energy Policy ◽  
2021 ◽  
Vol 158 ◽  
pp. 112562
Author(s):  
Lin Yang ◽  
Mao Xu ◽  
Jingli Fan ◽  
Xi Liang ◽  
Xian Zhang ◽  
...  

Author(s):  
Ioannis Hadjipaschalis ◽  
Costas Christou ◽  
Andreas Poullikkas

In this work, a technical, economic and environmental analysis concerning the use of three major power generation plant types including pulverized coal, integrated gasification combined cycle (IGCC) and natural gas combined cycle, with or without carbon dioxide (CO2) capture and storage (CCS) integration, is carried out. For the analysis, the IPP optimization software is used in which the electricity unit cost and the CO2 avoidance cost from the various candidate power generation technologies is calculated. The analysis indicates that the electricity unit cost of IGCC technology with CCS integration is the least cost option with the lowest CO2 avoidance cost of all candidate technologies with CCS integration. Further investigation concerning the effect of the loan interest rate on the economic performance of the candidate plants revealed that up to a value of loan interest of approximately 5.7%, the IGCC plant with CCS retains the lowest electricity unit cost. Above this level, the natural gas combined cycle plant with post-combustion CCS becomes more economically attractive.


Sign in / Sign up

Export Citation Format

Share Document