Dissimilatory Nitrate Reduction Processes in Typical Chinese Paddy Soils: Rates, Relative Contributions, and Influencing Factors

2016 ◽  
Vol 50 (18) ◽  
pp. 9972-9980 ◽  
Author(s):  
Jun Shan ◽  
Xu Zhao ◽  
Rong Sheng ◽  
Yongqiu Xia ◽  
Chaopu ti ◽  
...  
2021 ◽  
Vol 206 ◽  
pp. 104815
Author(s):  
Yinghui Jiang ◽  
Guoyu Yin ◽  
Lijun Hou ◽  
Min Liu ◽  
Dengzhou Gao ◽  
...  

2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Arjun Pandey ◽  
Helen Suter ◽  
Ji-Zheng He ◽  
Hang-Wei Hu ◽  
Deli Chen

ABSTRACTDissimilatory nitrate reduction to ammonium (DNRA), denitrification, anaerobic ammonium oxidation (anammox), and biological N2fixation (BNF) can influence the nitrogen (N) use efficiency of rice production. While the effect of N application on BNF is known, little is known about its effect on NO3−partitioning between DNRA, denitrification, and anammox. Here, we investigated the effect of N application on DNRA, denitrification, anammox, and BNF and on the abundance of relevant genes in three paddy soils in Australia. Rice was grown in a glasshouse with N fertilizer (150 kg N ha−1) and without N fertilizer for 75 days, and the rhizosphere and bulk soils were collected separately for laboratory incubation and quantitative PCR analysis. Nitrogen application reduced DNRA rates by >16% in all the soils regardless of the rhizospheric zone, but it did not affect thenrfAgene abundance. Without N, the amount and proportion of NO3−reduced by DNRA (0.42 to 0.52 μg g−1soil day−1and 45 to 55%, respectively) were similar to or higher than the amount and proportion reduced by denitrification. However, with N the amount of NO3−reduced by DNRA (0.32 to 0.40 μg g−1soil day−1) was 40 to 50% lower than the amount of NO3−reduced by denitrification. Denitrification loss increased by >20% with N addition and was affected by the rhizospheric zones. Nitrogen loss was minimal through anammox, while BNF added 0.02 to 0.25 μg N g−1soil day−1. We found that DNRA plays a significant positive role in paddy soil N retention, as it accounts for up to 55% of the total NO3−reduction, but this is reduced by N application.IMPORTANCEThis study provides evidence that nitrogen addition reduces nitrogen retention through DNRA and increases nitrogen loss via denitrification in a paddy soil ecosystem. DNRA is one of the major NO3−reduction processes, and it can outcompete denitrification in NO3−consumption when rice paddies are low in nitrogen. A significant level of DNRA activity in paddy soils indicates that DNRA plays an important role in retaining nitrogen by reducing NO3−availability for denitrification and leaching. Our study shows that by reducing N addition to rice paddies, there is a positive effect from reduced nitrogen loss but, more importantly, from the conversion of NO3−to NH4+, which is the favored form of mineral nitrogen for plant uptake.


2016 ◽  
Vol 36 (5) ◽  
Author(s):  
杨杉 YANG Shan ◽  
吴胜军 WU Shengjun ◽  
蔡延江 CAI Yanjiang ◽  
周文佐 ZHOU Wenzuo ◽  
朱同彬 ZHU Tongbin ◽  
...  

Author(s):  
Huiping Xu ◽  
Guanghua Lu ◽  
Chenwang Xue

The nitrogen pollution of rivers as a global environmental problem has received great attentions in recent years. The occurrence of emerging pollutants in high-altitude rivers will inevitably affect the dissimilatory nitrate reduction processes. In this study, sediment slurry experiments combined with 15N tracer techniques were conducted to investigate the influence of pharmaceutical and personal care products (alone and in combination) on denitrification and the anaerobic ammonium oxidation (anammox) process and the resulting N2O release in the sediments of the Yarlung Zangbo River. The results showed that the denitrification rates were inhibited by sulfamethoxazole (SMX) treatments (1–100 μg L−1) and the anammox rates decreased as the SMX concentrations increased, which may be due to the inhibitory effect of this antibiotic on nitrate reducing microbes. 2-Ethylhexyl-4-methoxycinnamate (EHMC) impacted nitrogen transformation mainly though the inhibition of the anammox processes. SMX and EHMC showed a superposition effect on the denitrification processes. The expression levels of the denitrifying functional genes nirS and nosZ were decreased and N2O release was stimulated due to the presence of SMX and/or EHMC in the sediments. To the best of our knowledge, this study is the first to report the effects of EHMC and its mixtures on the dissimilatory nitrate reduction processes and N2O releases in river sediments. Our results indicated that the widespread occurrence of emerging pollutants in high-altitude rivers may disturb the nitrogen transformation processes and increase the pressure of global warming.


2018 ◽  
Vol 242 ◽  
pp. 788-796 ◽  
Author(s):  
Jun Shan ◽  
Pinpin Yang ◽  
M. Mizanur Rahman ◽  
Xiaoxia Shang ◽  
Xiaoyuan Yan

2019 ◽  
Vol 142 (3) ◽  
pp. 375-393 ◽  
Author(s):  
Md. Moklesur Rahman ◽  
Keryn L. Roberts ◽  
Fiona Warry ◽  
Michael R. Grace ◽  
Perran L. M. Cook

Sign in / Sign up

Export Citation Format

Share Document