enclosed bay
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 47)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Yan Jiang ◽  
Bai-an Lin ◽  
Hao-yang He ◽  
Guang-mao Ding ◽  
Li-ting Yan ◽  
...  

Sansha Bay (26.40−27.00°N, 119.50−120.20°E) is a typical semi-enclosed bay, located in northern Fujian Province, China, and adjacent to the East China Sea. The ichthyoplankton species composition and assemblage structure were investigated based on monthly sampling at 25 stations in April−September 2019, covering the important spring and summer spawning seasons in the region. Sampling was conducted in the first 3−5 days of the full moon or new moon phases using a standard plankton net through horizontal and vertical tows during daytime. In total, 25,819 ichthyoplankton samples were collected, of which 25,449 samples (i.e., 24,757 eggs and 692 larvae) were from horizontal tows. For horizontal tow samples, the ichthyoplankton were classified into 58 taxa in 15 orders and 23 families with a combination of external morphology and DNA barcoding analyses, from pelagic to demersal and benthic species. The dominant order was the Gobiiformes, including 23 species (39.7% of all species). The dominant taxa, in terms of relative abundance and frequency of occurrence, consisted of commercially important fishes, such as Setipinna tenuifilis (Valenciennes, 1848) (Engraulidae), Epinephelus akaara (Temminck and Schlegel, 1842) (Serraenidae), Collichthys lucidus (Richardson, 1844), Nibea albiflora (Richardson, 1846) (Sciaenidae), Acanthopagrus schlegelii (Bleeker, 1854), and Pagrus major (Temminck and Schlegel, 1843) (Sparidae), accounting for 78.9% of the horizontal tow samples. Low-valued and small-sized fishes, such as Stolephorus commersonnii Lacepède, 1803 (Engraulidae), Solea ovata Richardson, 1846 (Soleidae), Nuchequula nuchalis (Temminck and Schlegel, 1845), and Photopectoralis bindus (Valenciennes, 1835) (Leiognathidae), were also dominant species, accounting for 11.4% of the horizontal tow samples. The ichthyoplankton assemblage was categorized into five different temporal assemblages based on the cluster and nonmetric multidimensional scaling analysis, namely, April, May, June, July, and August−September (ANOSIM, Global R = 0.656, p < 0.01) with the highest density and richness of ichthyoplankton occurred in May. The spatial distribution pattern showed that the high density (ind./m3) of ichthyoplankton occurred mainly in S12–S25 in Guanjingyang and along the Dongchong Peninsula coastline into Dongwuyang, while low density occurred mainly in S01–S11 in the northwest waters of Sandu Island (ANOVA, F = 8.270, p < 0.05). Temperature, salinity, and chlorophyll a were key factors structuring the ichthyoplankton assemblages in Sansha Bay. In addition, this study revealed the changes of the ichthyoplankton composition, density, and spatial distribution in Sansha Bay over the past three decades.


Author(s):  
Alexandros Petropoulos ◽  
Niki Evelpidou ◽  
Vasilis Kapsimalis ◽  
Christos Anagnostou ◽  
Anna Karkani

2021 ◽  
Author(s):  
Emilio Beier ◽  
Rubén Castro ◽  
Víctor Manuel Godínez

The first direct current observations (with LADCP and surface drifters) in Bahía de La Paz, a bay in the southwestern Gulf of California (GC), concur with previous reports that the main dynamical feature during summer is a closed cyclonic circulation. However, we found that geostrophic calculations overestimate the speed of the orbital velocity: actual speeds (0.20-0.25 m s-1) were ~25-40% lower than those estimated from geostrophic balance (0.25-0.35 m s-1). The reason is that the centrifugal force cannot be neglected in this case. The mean rotation period during ship-borne observations in August 2004 was ~1.4 days, but it varied during the time that surface drifters were inside the bay, from ~1-2 days in June-July to ~2.5-3 days in September-October. The analysis of satellite data (wind velocity, sea surface temperature and chlorophyll) show that from May to September the wind stress curl is strong and cyclonic, and the surface of the bay is cooler and richer than the adjacent Gulf of California waters, which could be attributed to the positive wind stress curl. This positive wind stress curl on the bay is part of a larger-scale positive wind stress curl distribution that surrounds the southern part of the Baja California Peninsula during summer, probably enhanced in the bay by local topography features. Although there is an exchange of water between the bay and the GC, its effect on the dynamics is poorly known.


2021 ◽  
Author(s):  
Junying Zhu ◽  
Jie Shi ◽  
Xinyu Guo

Abstract. A bottom cold water mass (BCWM) is a widespread physical oceanographic phenomenon in coastal seas, and its temperature variability has an important effect on the marine ecological environment. In this study, the interannual variation of the BCWM in Iyo-Nada (INCWM), a semi-enclosed bay in the Seto Inland Sea, Japan, from 1994 to 2015 and its influencing factors were investigated using monthly observational data and a hydrodynamic model. The interannual variation in water temperature inside the INCWM showed a negative correlation with the area of the INCWM, and positive correlations with the local water temperature from April to July and with remote water temperature below 10 m in an adjacent strait in July. Differing from previously studied BCWMs, which had interannual variations depending closely on the water temperature before the warming season, the interannual variation of INCWM depends strongly on the air-sea heat flux during the warming season via local vertical heat transport and lateral heat advection. Further, by comparing several BCWMs, we found that the BCWM size is a key factor in understanding the mechanisms responsible for the interannual variation of BCWMs in coastal seas. These findings will help to predict bottom water temperatures and improve the current understanding of ecosystem changes in shelf seas under global climate change.


Author(s):  
Rodrigo Mundo ◽  
Tetsuya Matsunaka ◽  
Hisanori Iwai ◽  
Shinya Ochiai ◽  
Seiya Nagao

Polycyclic aromatic hydrocarbons (PAHs), even at low concentrations, have been shown to trigger changes in life cycles and provoke abnormal behaviors in numerous marine organisms. From May 2019 to September 2020, particulate and dissolved PAH concentrations were analyzed on the surface water of West Nanao Bay, Japan, to determinate their levels, emission sources, environmental pathways, and ecological risks at this remote but semi-enclosed bay. The 14 targeted PAHs were analyzed by HPLC-fluorescence detector. Mean total PAH concentrations were lower than 20.0 ng L−1 for most samples. Based on fluoranthene (Flu) to pyrene (Pyr) ([Flu]/[Flu + Pyr]) and benzo[a]anthracene (BaA) to chrysene (Chr) ([BaA]/[BaA + Chr]) isomeric ratios and a varimax rotated PCA, it was established that biomass combustion was the principal source in the particulate phase and that liquid fossil fuel combustion was the principal source in the dissolved phase. From salinity and turbidity distribution, riverine discharges were determined to be the major and continuous transportation pathway of particulate PAHs. It was observed that rain events had a role in the transport of dissolved PAHs. The risk quotients (RQ∑14 PAHs (NCs): 0–84.53) indicated that PAHs represented a very low to low acute environmental risk. The results of this study will contribute to filling the paradigm gap of ecotoxicological studies in remote areas, working as a booster for future in-lab studies of non-lethal implications of endocrine disruptors such as PAHs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xin Lu ◽  
Jing Xu ◽  
Zhaodong Xu ◽  
Xiaoshou Liu

Semi-enclosed bays have physical and chemical characteristics influenced by both land and sea systems and the quality of the benthic environment is always of great concern. Macrofauna are considered good indicators for evaluating the benthic ecological quality status owing to their biological characteristics. In this study, six biotic indices, namely the Shannon–Wiener diversity index (H′), Abundance-Biomass Comparison (ABC) curve, AZTI’s Marine Biotic Index (AMBI), multivariate-AMBI (M-AMBI), BOPA index, and BENTIX index, were used to evaluate the adaptability of different biological indices in the bioassessment of the benthic environment in a semi-enclosed bay. In the annual environmental assessment of the study area, the average values of the six indices (H′, ABC curve, AMBI, M-AMBI, BOPA, and BENTIX) were 4.494, 0.182, 2.433, 0.791, 0.033, and 3.813, respectively; accordingly, H′, M-AMBI, and BOPA met the high standards whereas the other indices met the good standards, indicating that the whole study bay was slightly disturbed and had good ecological quality. From the perspective of spatial variation, the benthic environment in the middle of the bay was better than that in the north; the environmental problems in the northeast were particularly noteworthy. In terms of temporal patterns, the benthic environment in winter and summer was significantly better than that in spring and autumn, with obvious seasonal differences. The present results indicate that the H′ and ABC curve based on benthic abundance and biomass should be avoided for environmental assessment in mariculture areas. AMBI and M-AMBI should be used with caution when the percentage of unassigned species is high, in which case H′ is the appropriate choice. When there are few unassigned species, M-AMBI is more conducive for accurate evaluation of the benthic environment than AMBI and H′.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atsushi Kobiyama ◽  
Jonaira Rashid ◽  
Md. Shaheed Reza ◽  
Yuri Ikeda ◽  
Yuichiro Yamada ◽  
...  

AbstractFive years of datasets from 2015 to 2019 of whole genome shotgun sequencing for cells trapped on 0.2-µm filters of seawater collected monthly from Ofunato Bay, an enclosed bay in Japan, were analysed, which included the 2015 data that we had reported previously. Nucleotide sequences were determined for extracted DNA from three locations for both the upper (1 m) and deeper (8 or 10 m) depths. The biotic communities analysed at the domain level comprised bacteria, eukaryotes, archaea and viruses. The relative abundance of bacteria was over 60% in most months for the five years. The relative abundance of the SAR86 cluster was highest in the bacterial group, followed by Candidatus Pelagibacter and Planktomarina. The relative abundance of Ca. Pelagibacter showed no relationship with environmental factors, and those of SAR86 and Planktomarina showed positive correlations with salinity and dissolved oxygen, respectively. The bacterial community diversity showed seasonal changes, with high diversity around September and low diversity around January for all five years. Nonmetric multidimensional scaling analysis also revealed that the bacterial communities in the bay were grouped in a season-dependent manner and linked with environmental variables such as seawater temperature, salinity and dissolved oxygen.


Sign in / Sign up

Export Citation Format

Share Document