scholarly journals Nitrogen Addition Decreases Dissimilatory Nitrate Reduction to Ammonium in Rice Paddies

2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Arjun Pandey ◽  
Helen Suter ◽  
Ji-Zheng He ◽  
Hang-Wei Hu ◽  
Deli Chen

ABSTRACTDissimilatory nitrate reduction to ammonium (DNRA), denitrification, anaerobic ammonium oxidation (anammox), and biological N2fixation (BNF) can influence the nitrogen (N) use efficiency of rice production. While the effect of N application on BNF is known, little is known about its effect on NO3−partitioning between DNRA, denitrification, and anammox. Here, we investigated the effect of N application on DNRA, denitrification, anammox, and BNF and on the abundance of relevant genes in three paddy soils in Australia. Rice was grown in a glasshouse with N fertilizer (150 kg N ha−1) and without N fertilizer for 75 days, and the rhizosphere and bulk soils were collected separately for laboratory incubation and quantitative PCR analysis. Nitrogen application reduced DNRA rates by >16% in all the soils regardless of the rhizospheric zone, but it did not affect thenrfAgene abundance. Without N, the amount and proportion of NO3−reduced by DNRA (0.42 to 0.52 μg g−1soil day−1and 45 to 55%, respectively) were similar to or higher than the amount and proportion reduced by denitrification. However, with N the amount of NO3−reduced by DNRA (0.32 to 0.40 μg g−1soil day−1) was 40 to 50% lower than the amount of NO3−reduced by denitrification. Denitrification loss increased by >20% with N addition and was affected by the rhizospheric zones. Nitrogen loss was minimal through anammox, while BNF added 0.02 to 0.25 μg N g−1soil day−1. We found that DNRA plays a significant positive role in paddy soil N retention, as it accounts for up to 55% of the total NO3−reduction, but this is reduced by N application.IMPORTANCEThis study provides evidence that nitrogen addition reduces nitrogen retention through DNRA and increases nitrogen loss via denitrification in a paddy soil ecosystem. DNRA is one of the major NO3−reduction processes, and it can outcompete denitrification in NO3−consumption when rice paddies are low in nitrogen. A significant level of DNRA activity in paddy soils indicates that DNRA plays an important role in retaining nitrogen by reducing NO3−availability for denitrification and leaching. Our study shows that by reducing N addition to rice paddies, there is a positive effect from reduced nitrogen loss but, more importantly, from the conversion of NO3−to NH4+, which is the favored form of mineral nitrogen for plant uptake.

Pedosphere ◽  
2012 ◽  
Vol 22 (3) ◽  
pp. 314-321 ◽  
Author(s):  
Wei-Wei LU ◽  
S. RIYA ◽  
Sheng ZHOU ◽  
M. HOSOMI ◽  
Hai-Lin ZHANG ◽  
...  

2020 ◽  
Vol 35 (4) ◽  
pp. n/a
Author(s):  
Yosuke Nojiri ◽  
Yuka Kaneko ◽  
Yoichi Azegami ◽  
Yutaka Shiratori ◽  
Nobuhito Ohte ◽  
...  

2021 ◽  
Vol 295 ◽  
pp. 126429 ◽  
Author(s):  
Manping Zhang ◽  
Jung-Chen Huang ◽  
Shanshan Sun ◽  
Muhammad Muneeb Ur Rehman ◽  
Shengbing He ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


Sign in / Sign up

Export Citation Format

Share Document