Simultaneous Optimization of a Heat Exchanger Network and Operating Conditions of Organic Rankine Cycle

2020 ◽  
Vol 59 (25) ◽  
pp. 11596-11609 ◽  
Author(s):  
Xuan Dong ◽  
Zuwei Liao ◽  
Jingyuan Sun ◽  
Zhengliang Huang ◽  
Binbo Jiang ◽  
...  
2013 ◽  
Vol 856 ◽  
pp. 349-356 ◽  
Author(s):  
Kai Yang ◽  
Hong Guang Zhang ◽  
Zhen Wang ◽  
Jian Zhang ◽  
Fu Bin Yang ◽  
...  

Through experiment, the variation of the exhaust energy of the vehicle diesel engine is studied, a set of vehicle diesel engine-organic Rankine cycle (ORC) combined system with internal heat exchanger (IHE) is designed, the zeotropic mixtures R416A is used as the working fluids for the ORC system with IHE, by theoretical analysis and numerical calculation, the variation of the vehicle diesel engine-ORC combined system with IHE under entire operating conditions of the diesel engine is studied, the calculation results show that, when engine is operating at high speed and high torque, the performance of the vehicle diesel engine-ORC combined system with IHE is higher.


Author(s):  
Uzziel Caldiño-Herrera ◽  
Delfino Cornejo-Monroy ◽  
Shehret Tilvaldyev ◽  
José Omar Dávalos-Ramírez

In this paper we present the implementation of a system based on organic Rankine cycle coupled to a heat discharge of an industrial process. Waste heat is used as an energy source input to the system, which uses this energy to evaporate an organic fluid and expand it in a turbine, where mechanical power is produced. The system consists of 4 processes and the heat exchanger is specially analyzed. According to the availability of heat energy, the heat exchanger was designed to achieve the maximum efficiency in the energy system. Likewise, the maximum thermal efficiency of the ORC system is calculated as a function of the available energy, the energy source temperature and the available mass flow rate. By these calculations, the working fluid and the suitable operating conditions were selected through a thermodynamic analysis.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3615 ◽  
Author(s):  
James Bull ◽  
James M. Buick ◽  
Jovana Radulovic

Approximately 45% of power generated by conventional power systems is wasted due to power conversion process limitations. Waste heat recovery can be achieved in an Organic Rankine Cycle (ORC) by converting low temperature waste heat into useful energy, at relatively low-pressure operating conditions. The ORC system considered in this study utilises R-1234yf as the working fluid; the work output and thermal efficiency were evaluated for several operational pressures. Plate and shell and tube heat exchangers were analysed for the three sections: preheater, evaporator and superheater for the hot side; and precooler and condenser for the cold side. Each heat exchanger section was sized using the appropriate correlation equations for single-phase and two-phase fluid models. The overall heat exchanger size was evaluated for optimal operational conditions. It was found that the plate heat exchanger out-performed the shell and tube in regard to the overall heat transfer coefficient and area.


Energy ◽  
2020 ◽  
Vol 195 ◽  
pp. 116922 ◽  
Author(s):  
Xiaojian Huang ◽  
Pei Lu ◽  
Xianglong Luo ◽  
Jianyong Chen ◽  
Zhi Yang ◽  
...  

2014 ◽  
Vol 53 (44) ◽  
pp. 16924-16936 ◽  
Author(s):  
Cheng-Liang Chen ◽  
Feng-Yi Chang ◽  
Tzu-Hsiang Chao ◽  
Hui-Chu Chen ◽  
Jui-Yuan Lee

2021 ◽  
Vol 11 (5) ◽  
pp. 1984
Author(s):  
Ramin Moradi ◽  
Emanuele Habib ◽  
Enrico Bocci ◽  
Luca Cioccolanti

Organic Rankine cycle (ORC) systems are some of the most suitable technologies to produce electricity from low-temperature waste heat. In this study, a non-regenerative, micro-scale ORC system was tested in off-design conditions using R134a as the working fluid. The experimental data were then used to tune the semi-empirical models of the main components of the system. Eventually, the models were used in a component-oriented system solver to map the system electric performance at varying operating conditions. The analysis highlighted the non-negligible impact of the plunger pump on the system performance Indeed, the experimental results showed that the low pump efficiency in the investigated operating range can lead to negative net electric power in some working conditions. For most data points, the expander and the pump isentropic efficiencies are found in the approximate ranges of 35% to 55% and 17% to 34%, respectively. Furthermore, the maximum net electric power was about 200 W with a net electric efficiency of about 1.2%, thus also stressing the importance of a proper selection of the pump for waste heat recovery applications.


Sign in / Sign up

Export Citation Format

Share Document