Dynamic Modeling and Optimization of a Fixed-Bed Reactor for the Partial Water–Gas Shift Reaction

Author(s):  
Pranav V. Kherdekar ◽  
Shantanu Roy ◽  
Divesh Bhatia
2017 ◽  
Vol 12 (3) ◽  
Author(s):  
Davood Mohammady Maklavany ◽  
Ahmad Shariati ◽  
Mohammad Reza Khosravi-Nikou ◽  
Behrooz Roozbehani

Abstract The kinetics study, modeling, simulation and optimization of water gas shift reaction were performed in a catalytic fixed bed reactor. The renowned empirical power law rate model was used as rate equation and fitted to experimental data to estimate the kinetics parameters using gPROMS. A good fit between predicted and experimental CO conversion data was obtained. The validity of the kinetic model was then checked by simulation of plug flow reactor which shows a good agreement between experimental and predicted values of the reaction rate. Subsequently, considering axial dispersion, a homogeneous model was developed for simulation of the water-gas shift reactor. The simulation results were also validated by checking the pressure drop of the reactor as well as the mass concentration at equilibrium. Finally, a multi-objective optimization was conducted for water-gas shift reaction in order to maximize hydrogen formation and carbon monoxide conversion, whereas the reactor volume to be minimized. Implementation of optimal controls leads to increase in hydrogen formation at reactor outlet up to 25.55 %.


2020 ◽  
Author(s):  
Nore Stolte ◽  
Junting Yu ◽  
Zixin Chen ◽  
Dimitri A. Sverjensky ◽  
Ding Pan

The water-gas shift reaction is a key reaction in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle, but is little known at extreme pressure-temperature conditions found in Earth’s upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid out of CO and supercritical water at 10∼13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000∼1400 K. Our study suggests that the water-gas shift reaction may not happen in Earth’s upper mantle, and formic acid or formate may be an important carbon carrier, participating in many geochemical processes in deep Earth.<br>


2013 ◽  
Vol 33 (9) ◽  
pp. 1572-1577 ◽  
Author(s):  
Yuanzhuo ZHANG ◽  
Ziying YU ◽  
Fumin ZHANG ◽  
Qiang XIAO ◽  
Yijun ZHONG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document