Increasing NADPH Availability for Xylitol Production via Pentose-Phosphate-Pathway Gene Overexpression and Embden–Meyerhof–Parnas-Pathway Gene Deletion in Escherichia coli

Author(s):  
Xinsong Yuan ◽  
Yudi Mao ◽  
Shuai Tu ◽  
Jianping Lin ◽  
Huahao Shen ◽  
...  
2014 ◽  
Vol 82 (7) ◽  
pp. 2746-2755 ◽  
Author(s):  
E. A. Waligora ◽  
C. R. Fisher ◽  
N. J. Hanovice ◽  
A. Rodou ◽  
E. E. Wyckoff ◽  
...  

ABSTRACTShigella flexneri, which replicates in the cytoplasm of intestinal epithelial cells, can use the Embden-Meyerhof-Parnas, Entner-Doudoroff, or pentose phosphate pathway for glycolytic carbon metabolism. To determine which of these pathways is used by intracellularS. flexneri, mutants were constructed and tested in a plaque assay for the ability to invade, replicate intracellularly, and spread to adjacent epithelial cells. Mutants blocked in the Embden-Meyerhof-Parnas pathway (pfkABandpykAFmutants) invaded the cells but formed very small plaques. Loss of the Entner-Doudoroff pathway geneedaresulted in small plaques, but the doubleeda eddmutant formed normal-size plaques. This suggested that the plaque defect of theedamutant was due to buildup of the toxic intermediate 2-keto-3-deoxy-6-phosphogluconic acid rather than a specific requirement for this pathway. Loss of the pentose phosphate pathway had no effect on plaque formation, indicating that it is not critical for intracellularS. flexneri. Supplementation of the epithelial cell culture medium with pyruvate allowed the glycolysis mutants to form larger plaques than those observed with unsupplemented medium, consistent with data from phenotypic microarrays (Biolog) indicating that pyruvate metabolism was not disrupted in these mutants. Interestingly, the wild-typeS. flexnerialso formed larger plaques in the presence of supplemental pyruvate or glucose, with pyruvate yielding the largest plaques. Analysis of the metabolites in the cultured cells showed increased intracellular levels of the added compound. Pyruvate increased the growth rate ofS. flexneriin vitro, suggesting that it may be a preferred carbon source inside host cells.


2011 ◽  
Vol 35 (1-2) ◽  
pp. 199-204 ◽  
Author(s):  
Irshad Ahmad ◽  
Woo Yong Shim ◽  
Woo Young Jeon ◽  
Byoung Hoon Yoon ◽  
Jung-Hoe Kim

2002 ◽  
Vol 68 (4) ◽  
pp. 1604-1609 ◽  
Author(s):  
Marie Jeppsson ◽  
Björn Johansson ◽  
Bärbel Hahn-Hägerdal ◽  
Marie F. Gorwa-Grauslund

ABSTRACT In recombinant, xylose-fermenting Saccharomyces cerevisiae, about 30% of the consumed xylose is converted to xylitol. Xylitol production results from a cofactor imbalance, since xylose reductase uses both NADPH and NADH, while xylitol dehydrogenase uses only NAD+. In this study we increased the ethanol yield and decreased the xylitol yield by lowering the flux through the NADPH-producing pentose phosphate pathway. The pentose phosphate pathway was blocked either by disruption of the GND1 gene, one of the isogenes of 6-phosphogluconate dehydrogenase, or by disruption of the ZWF1 gene, which encodes glucose 6-phosphate dehydrogenase. Decreasing the phosphoglucose isomerase activity by 90% also lowered the pentose phosphate pathway flux. These modifications all resulted in lower xylitol yield and higher ethanol yield than in the control strains. TMB3255, carrying a disruption of ZWF1, gave the highest ethanol yield (0.41 g g−1) and the lowest xylitol yield (0.05 g g−1) reported for a xylose-fermenting recombinant S. cerevisiae strain, but also an 84% lower xylose consumption rate. The low xylose fermentation rate is probably due to limited NADPH-mediated xylose reduction. Metabolic flux modeling of TMB3255 confirmed that the NADPH-producing pentose phosphate pathway was blocked and that xylose reduction was mediated only by NADH, leading to a lower rate of xylose consumption. These results indicate that xylitol production is strongly connected to the flux through the oxidative part of the pentose phosphate pathway.


Sign in / Sign up

Export Citation Format

Share Document