plaque assay
Recently Published Documents


TOTAL DOCUMENTS

866
(FIVE YEARS 137)

H-INDEX

62
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ana C Lorenzo-Leal ◽  
Selvarani Vimalanathan ◽  
Horacio Bach

The use of facial protection, including masks and respirators, has been adopted globally due to the COVID-19 pandemic. These products have been demonstrated to be effective in reducing the transmission of the virus. To determine whether or not the virus adheres to masks and respirators, we dissected four respirators and one surgical mask into layers. These individual layers were contaminated with the SARS-CoV-2 delta variant, and its release by vortexing was performed. Samples were used to infect Vero cells, and a plaque assay was used to determine to evaluate the adherence of the virus. Results showed that a cumulative log reduction of the layers reduced the load of the virus six-folds. Our study confirms the effectiveness of facial protection in reducing the transmission and or infection of the virus.


2022 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Tautvydas Shuipys ◽  
Naim Montazeri

Murine hepatitis virus (MHV) is a non-human pathogen betacoronavirus that is evolutionarily and structurally related to the human pathogenic viruses SARS-CoV, MERS-CoV, and SARS-CoV-2. However, unlike the human SARS and MERS viruses, MHV requires a biosafety level 2 laboratory for propagating and safe handling, making it a potentially suitable surrogate virus. Despite this utility, few papers discussed the propagation and quantification of MHV using cell lines readily available in biorepositories making their implementations not easily reproducible. This article provides protocols for propagating and quantifying MHV-A59 using the recommended NCTC clone 1469 and clone 929 cell lines from American Type Culture Collection (ATCC). More specifically, the methods detail reviving cells, routine cell passaging, preparing freeze stocks, infection of NCTC clone 1469 with MHV and subsequent harvesting, and plaque assay quantification of MHV using NCTC clone 929 cells. Using these protocols, a BSL-2 laboratory equipped for cell culture work would generate at least 6.0 log plaque-forming units (PFU) per mL of MHV lysate and provide an optimized overlay assay using either methylcellulose or agarose as overlays for the titration of infectious virus particles. The protocols described here are intended to be utilized for persistence and inactivation studies of coronaviruses.


2021 ◽  
Author(s):  
Zack Saud ◽  
Mark J PONSFORD ◽  
Kirsten Bentley ◽  
Jade Cole ◽  
Manish Pandey ◽  
...  

Background SARS-CoV-2 infection can lead to severe acute respiratory distress syndrome needing intensive care admission and may lead to death. As a virus that transmits by respiratory droplets and aerosols, determining the duration of viable virus shedding from the respiratory tract is critical for patient prognosis, and informs infection control measures both within healthcare settings and the public domain. Methods We examined upper and lower airway respiratory secretions for both viral RNA and infectious virions in mechanically ventilated patients admitted to the intensive care unit of the University Hospital of Wales. Samples were taken from the oral cavity (saliva), oropharynx (sub-glottic aspirate), or lower respiratory tract (non-directed bronchoalveolar lavage (NBL) or bronchoalveolar lavage (BAL)) and analyzed by both qPCR and plaque assay. Results 117 samples were obtained from 25 patients. qPCR showed extremely high rates of positivity across all sample types, however live virus was far more common in saliva (68%) than in BAL/NBAL (32%). Average titres of live virus were higher in subglottic aspirates (4.5x10^7) than in saliva (2.2x10^6) or BAL/NBAL (8.5x10^6), and reached >10^8 PFU/ml in some samples. The longest duration of shedding was 98 days, while the majority of patients (14/25) shed live virus for 20 days or longer. Conclusions Intensive care unit patients infected with SARS-CoV-2 can shed high titres of virus both in the upper and lower respiratory tract, and tend to be prolonged shedders. This information is important for decision making around cohorting patients, de-escalation of PPE, and undertaking potential aerosol generating procedures.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2442
Author(s):  
Yixin Yuan ◽  
Shaopo Zu ◽  
Yunfei Zhang ◽  
Fujie Zhao ◽  
Xiaohui Jin ◽  
...  

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV–host interactions and provides new strategies to control PDCoV infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryutaro Furukawa ◽  
Masahiro Kitabatake ◽  
Noriko Ouji-Sageshima ◽  
Yuki Suzuki ◽  
Akiyo Nakano ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world. Inactivating the virus in saliva and the oral cavity represents a reasonable approach to prevent human-to-human transmission because the virus is easily transmitted through oral routes by dispersed saliva. Persimmon-derived tannin is a condensed type of tannin that has strong antioxidant and antimicrobial activity. In this study, we investigated the antiviral effects of persimmon-derived tannin against SARS-CoV-2 in both in vitro and in vivo models. We found that persimmon-derived tannin suppressed SARS-CoV-2 titers measured by plaque assay in vitro in a dose- and time-dependent manner. We then created a Syrian hamster model by inoculating SARS-CoV-2 into hamsters’ mouths. Oral administration of persimmon-derived tannin dissolved in carboxymethyl cellulose before virus inoculation dramatically reduced the severity of pneumonia with lower virus titers compared with a control group inoculated with carboxymethyl cellulose alone. In addition, pre-administration of tannin to uninfected hamsters reduced hamster-to-hamster transmission of SARS-CoV-2 from a cohoused, infected donor cage mate. These data suggest that oral administration of persimmon-derived tannin may help reduce the severity of SARS-CoV-2 infection and transmission of the virus.


Author(s):  
Lingli Li ◽  
Ming Yu ◽  
Chao Yang ◽  
Chunping Deng ◽  
Lili Ma ◽  
...  

Abstract Bacteriophage has attracted growing interest as a promising therapeutic agent for pathogenic bacteria, especially for antibiotic-resistant bacteria. However, the various abiotic conditions could impact the stability of phages and further threat host-virus interactions. Here, we investigated the stability and lytic activity of virulent polyvalent coliphage (named PE1) by double-layer plaque assay. PE1 can efficiently infect both the drug-sensitive Escherichia coli K12 and multidrug-resistant E. coli NDM-1 even after prolonged storage at 4 °C up to two months. Results showed that PE1 exhibits an outstanding stability to infect E. coli strains under a wide range of thermal (4 °C–60 °C) and pH (4–11) conditions, which covers the thermal and pH variations of most wastewater treatment plants. Moreover, PE1 exhibited high resistibility to heavy metals exposure including Cu2+, Cd2+, Co2+, and Cr3+ at the concentrations below 0.5 mM, and an excellent resistant ability to the variation of ionic strength, which still retained strong infectious ability even treated with saturated sodium chloride solution (350 g/L). This work shows that polyvalent phage PE1 has a strong adaptive capacity to various abiotic factors and should be a good candidate of being an antibacterial agent, especially for antibiotic-resistant bacteria control in sewage.


2021 ◽  
Author(s):  
Nicole Lynn McLellan ◽  
Susan C Weir ◽  
Hung Lee ◽  
Marc B Habash

The most common and cost-effective approach to concentrating viruses from water samples involves virus adsorption and elution procedures, followed by secondary concentration. There is a lack of consistency in how secondary concentration methods are practiced and some methods may have better recovery for particular groups of viruses. Secondary concentration methods typically involve precipitation and the most common methods employ organic flocculation (OF) by acidification at a pH of 3.5, or precipitation by polyethylene glycol (PEG) in combination with NaCl. In this study, the recovery of coliphage MS2 using the plaque assay and human adenovirus strain 41 (HAdV41) using cell-culture and qPCR assays were evaluated by OF and PEG secondary concentration of spiked samples of wastewater, surface water, and groundwater. Recovery of MS2 and HAdV41 by PEG precipitation was significantly higher than OF (p<0.0001) when viruses were detected by culture based methods and marginally better when HAdV41 was enumerated by qPCR (p<0.019). The recovery of HAdV41 by qPCR ranged from 75.3% to 94.4% (n=36). The mean recovery of MS2 by OF was 4.4% (0.9%-7.7%; n=14) and ranged from 57.1% to 87.9% (n=28) for the PEG methods. Poor recovery of MS2 by OF was attributed to inactivation or poor stability at acidic conditions as MS2 were not recovered in the supernatant following OF and centrifugation. The inconsistency and lack of justification for method selection in many studies calls for a systematic study to inform guidance and standardization with respect to the application of concentration methods for various water types and viral pathogens.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260155
Author(s):  
Christoph Jindra ◽  
Edmund K. Hainisch ◽  
Andrea Rümmele ◽  
Markus Wolschek ◽  
Thomas Muster ◽  
...  

Bovine papillomaviruses types 1 and 2 (BPV1, BPV2) commonly induce skin tumours termed sarcoids in horses and other equids. Sarcoids seriously compromise the health and welfare of affected individuals due to their propensity to resist treatment and reoccur in a more severe form. We have developed influenza (Flu) A and B virus vectors that harbour a truncated NS1 gene (iNS) assuring interferon induction and co-express shuffled BPV1 E6 and E7 antigens for sarcoid immunotherapy. In a safety trial involving 12 healthy horses, intradermal administration of iNSA/E6E7equ and iNSB/E6E7equ was well tolerated, with the only transient side effect being mild fever in four horses. Repeated screening of secretions and faeces by RT-PCR and plaque assay revealed no virus shedding, thus also confirming biological safety. In a patient trial involving 29 horses bearing BPV1-induced single or multiple sarcoids, at least one lesion per horse was intratumourally injected and then boosted with iNSA/E6E7equ and/or iNSB/E6E7equ. The treatment induced a systemic antitumour response as reflected by the synchronous regression of injected and non-injected lesions. Irrespective of vaccination schemes, complete tumour regression was achieved in 10/29 horses. In 10/29 horses, regression is still ongoing (May 2021). Intriguingly, scrapings collected from former tumour sites in two patients tested negative by BPV1 PCR. Nine severely affected individuals with a history of unsuccessful therapeutic attempts did not (6/29) or only transiently (3/29) respond to the treatment. INSA/E6E7equ and iNSB/E6E7equ proved safe and effective in significantly reducing the tumour burden even in severe cases.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6900
Author(s):  
Damariz Marín-Palma ◽  
Jorge H. Tabares-Guevara ◽  
María I. Zapata-Cardona ◽  
Lizdany Flórez-Álvarez ◽  
Lina M. Yepes ◽  
...  

Due to the scarcity of therapeutic approaches for COVID-19, we investigated the antiviral and anti-inflammatory properties of curcumin against SARS-CoV-2 using in vitro models. The cytotoxicity of curcumin was evaluated using MTT assay in Vero E6 cells. The antiviral activity of this compound against SARS-CoV-2 was evaluated using four treatment strategies (i. pre–post infection treatment, ii. co-treatment, iii. pre-infection, and iv. post-infection). The D614G strain and Delta variant of SARS-CoV-2 were used, and the viral titer was quantified by plaque assay. The anti-inflammatory effect was evaluated in peripheral blood mononuclear cells (PBMCs) using qPCR and ELISA. By pre–post infection treatment, Curcumin (10 µg/mL) exhibited antiviral effect of 99% and 99.8% against DG614 strain and Delta variant, respectively. Curcumin also inhibited D614G strain by pre-infection and post-infection treatment. In addition, curcumin showed a virucidal effect against D614G strain and Delta variant. Finally, the pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) released by PBMCs triggered by SARS-CoV-2 were decreased after treatment with curcumin. Our results suggest that curcumin affects the SARS-CoV-2 replicative cycle and exhibits virucidal effect with a variant/strain independent antiviral effect and immune-modulatory properties. This is the first study that showed a combined (antiviral/anti-inflammatory) effect of curcumin during SARS-CoV-2 infection. However, additional studies are required to define its use as a treatment for the COVID-19.


Sign in / Sign up

Export Citation Format

Share Document