Characterization of Morphology, Volatile Profiles, and Molecular Markers in Edible Desert Truffles from the Negev Desert

2017 ◽  
Vol 65 (14) ◽  
pp. 2977-2983 ◽  
Author(s):  
Madhu Kamle ◽  
Einat Bar ◽  
Dalia Lewinsohn ◽  
Elinoar Shavit ◽  
Nurit Roth-Bejerano ◽  
...  
2009 ◽  
Vol 35 (11) ◽  
pp. 2107-2115 ◽  
Author(s):  
Huai-Jun TANG ◽  
Gui-Hong YIN ◽  
Xian-Chun XIA ◽  
Jian-Jun FENG ◽  
Yan-Ying QU ◽  
...  

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 685-697 ◽  
Author(s):  
Edward K Kentner ◽  
Michael L Arnold ◽  
Susan R Wessler

Abstract The Louisiana iris species Iris brevicaulis and I. fulva are morphologically and karyotypically distinct yet frequently hybridize in nature. A group of high-copy-number TY3/gypsy-like retrotransposons was characterized from these species and used to develop molecular markers that take advantage of the abundance and distribution of these elements in the large iris genome. The copy number of these IRRE elements (for iris retroelement), is ∼1 × 105, accounting for ∼6–10% of the ∼10,000-Mb haploid Louisiana iris genome. IRRE elements are transcriptionally active in I. brevicaulis and I. fulva and their F1 and backcross hybrids. The LTRs of the elements are more variable than the coding domains and can be used to define several distinct IRRE subfamilies. Transposon display or S-SAP markers specific to two of these subfamilies have been developed and are highly polymorphic among wild-collected individuals of each species. As IRRE elements are present in each of 11 iris species tested, the marker system has the potential to provide valuable comparative data on the dynamics of retrotransposition in large plant genomes.


2009 ◽  
Vol 18 (6) ◽  
pp. 971-986 ◽  
Author(s):  
Ming-Jen Fan ◽  
Shu Chen ◽  
Yi-Jung Kung ◽  
Ying-Huey Cheng ◽  
Huey-Jiunn Bau ◽  
...  

Parasitology ◽  
2017 ◽  
Vol 144 (13) ◽  
pp. 1726-1735 ◽  
Author(s):  
GEDIMINAS VALKIŪNAS ◽  
MIKAS ILGŪNAS ◽  
DOVILĖ BUKAUSKAITĖ ◽  
VAIDAS PALINAUSKAS ◽  
RASA BERNOTIENĖ ◽  
...  

SUMMARYSpecies of Plasmodium (Plasmodiidae, Haemosporida) are widespread and cause malaria, which can be severe in avian hosts. Molecular markers are essential to detect and identify parasites, but still absent for many avian malaria and related haemosporidian species. Here, we provide first molecular characterization of Plasmodium matutinum, a common agent of avian malaria. This parasite was isolated from a naturally infected thrush nightingale Luscinia luscinia (Muscicapidae). Fragments of mitochondrial, apicoplast and nuclear genomes were obtained. Domestic canaries Serinus canaria were susceptible after inoculation of infected blood, and the long-lasting light parasitemia developed in two exposed birds. Clinical signs of illness were not reported. Illustrations of blood stages of P. matutinum (pLINN1) are given, and phylogenetic analysis identified the closely related avian Plasmodium species. The phylogeny based on partial cytochrome b (cyt b) sequences suggests that this parasite is most closely related to Plasmodium tejerai (cyt b lineage pSPMAG01), a common malaria parasite of American birds. Both these parasites belong to subgenus Haemamoeba, and their blood stages are similar morphologically, particularly due to marked vacuolization of the cytoplasm in growing erythrocytic meronts. Molecular data show that transmission of P. matutinum (pLINN1) occurs broadly in the Holarctic, and the parasite likely is of cosmopolitan distribution. Passeriform birds and Culex mosquitoes are common hosts. This study provides first molecular markers for detection of P. matutinum.


Sign in / Sign up

Export Citation Format

Share Document