avian malaria
Recently Published Documents


TOTAL DOCUMENTS

478
(FIVE YEARS 80)

H-INDEX

52
(FIVE YEARS 5)

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jallailudeen Rabana Lawal ◽  
Umar Isa IBRAHIM ◽  
Abdullahi Abubakar BIU ◽  
Hassan Ismail MUSA

Reports of avian malaria parasites in village chicken in Nigeria generally remain fragmentary and scarce. The study was conducted in Gombe Local Government Area of Gombe State, Nigeria to investigate avian malaria parasites in Village Chickens (Gallus gallus domesticus) and to determine the risk factors associated with the prevalence of the haemoparasites. A total of 530 village chickens blood samples were obtained from apparently healthy village chickens' brachial veins using sterile 2mls syringes and 23 gauge needles. Thin blood smear was made from each blood sample, and Giemsa stained and examined for the presence of avian haemoparasites under an electro-microscope. The result indicates 23.8% overall prevalence rate of three species of avian malaria parasites consisting of Plasmodium, Haemoproteus and Leucocytozoon species.Plasmodium spp. has the highest prevalent rate of 13.0% followed by Haemoproteus spp. (5.1%), mixed Plasmodium spp. + Haemoproteus spp. (4.9%) infection and Leucocytozoon spp. (0.8%). Prevalence of avian malaria parasites was significantly higher in cocks compared to hens (p < 0.05), as well as higher in adults compared to growers chickens (p < 0.05). This study also showed a higher prevalence of avian malaria parasites during the rainy season compared to the dry season of the study period. It was concluded that haemoparasites of Plasmodium, Haemoproteus and Leucocytozoon species that occur in both single and mixed infections are prevalent among village chickens that are apparently healthy in Gombe Local Government Area of Gombe State, Nigeria.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 657
Author(s):  
Jesús T. García ◽  
Javier Viñuela ◽  
María Calero-Riestra ◽  
Inés S. Sánchez-Barbudo ◽  
Diego Villanúa ◽  
...  

Anthropogenic activities, such as the translocation or introduction of animals, may cause a parallel movement of exotic parasites harboured by displaced animals. Although introduction and/or relocation of animals for hunting purposes is an increasingly common management technique, the effects of gamebird release as a major vehicle for the introduction of parasites into new geographic regions have rarely been reported. We examined the prevalence and distribution of avian malaria parasites infecting resident avian hosts (red-legged partridge Alectoris rufa) at a local scale, with a particular emphasis on the effects of releasing farm-reared birds for hunting on the spatial and temporal structure of the parasite community. We collected blood samples from adult partridges from two game estates with partridge releases and two sites without releases over two periods (spring and autumn). We tested the probability of infection and differences in the parasite community in relation to the management model (releases vs. non releases) and sampling period, comparing autumn (when farm-reared birds are released) and spring (after hunting season, when mostly wild birds can be found in the population). We found a high prevalence (54%) of Plasmodium spp., and substantial differences in the spatial and temporal distribution of parasite lineages among the populations studied. Some parasite lineages occurred at high frequencies in game estates without introduction of farm-reared partridges, while other lineages were more abundant in game estates with releases than in those without releases. Overall, the prevalence of avian malaria was similar between spring and autumn at non-release sites, whereas in sites with releases, it was higher in autumn than in spring—probably due to artificial restocking with infected farm-reared birds at the onset of the hunting season. In short, humans may be an important agent driving the alteration of the spatial structure of local parasite fauna via the introduction of exotic parasites by gamebird release, which could cause avian malaria outbreaks with severe repercussions for native avifauna.


Zoonoses ◽  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Xin-zhuan Su ◽  
Jian Wu

Malaria is a deadly disease that affects the health of hundreds of millions of people annually. Five Plasmodium parasite species naturally infect humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and Plasmodium knowlesi. These parasites can also infect various non-human primates. Parasites mainly infecting monkeys, such as Plasmodium cynomolgi and P. knowlesi, the latter of which was considered to be a monkey parasite for years, can also be transmitted to human hosts. Recently, many new Plasmodium species have been discovered in African apes, some of which may be transmitted to humans in the future. Here, we searched PubMed and the internet via Google and selected articles on the zoonotic transmission and evolution of selected malaria parasite species. We review current advances in the relevant topics, emphasizing the transmission of malaria parasites between humans and non-human primates. We also briefly discuss the transmission of some avian malaria parasites between wild birds and domestic fowls. Zoonotic malaria transmission is widespread, thus posing a threat to public health. More studies on parasite species, including their identification in non-human primates, transmission, and evolution, are needed to decrease or prevent the transmission of malaria parasites from non-human primates to humans.


2021 ◽  
Vol 113 ◽  
pp. 103789
Author(s):  
Paulina Álvarez-Mendizábal ◽  
Fabricio Villalobos ◽  
Karla Rodríguez-Hernández ◽  
Carolina Hernández-Lara ◽  
Oscar Rico-Chávez ◽  
...  

2021 ◽  
Vol 26 (1) ◽  
pp. 65-73
Author(s):  
M. M. Shader ◽  
A. Y. Akoob

This study included two stages, the first one was as epidemiological study of malaria in the local chickens of variuos areas in Salahuddin province the infection rate was 3.16 % out of 433 samples taken. There was different blood stages of the parasite which are represented by trophzoites, schizonts and to less extent gametocytes. The second stage was the experimental study,which showed the ability of induction of infection (subinoculation technique). Prepatent period was represented by the presence of trophozoites m schizonts and gametocytes. The most important clinical signs was partial paralysis , dullness and emaciation. The pathological changes showed congestion and enlargement of liver and spleen. congestion of brain with absence of exo-erythrocytic mild lymphocytosis in the infected group. it was concluded the ability of diagnosis of avian malaria using human malaria antigen by the indirect fluorescence antibody technique.


Author(s):  
Gabrielle R. Names ◽  
Elizabeth M. Schultz ◽  
Jesse S. Krause ◽  
Thomas P. Hahn ◽  
John C. Wingfield ◽  
...  

Vertebrates confronted with challenging environments often experience an increase in circulating glucocorticoids, which result in morphological, physiological, and behavioral changes that promote survival. However, chronically elevated glucocorticoids can suppress immunity, which may increase susceptibility to disease. Since the introduction of avian malaria to Hawaii a century ago, low elevation populations of Hawaii Amakihi (Chlorodrepanis virens) have undergone strong selection by avian malaria and evolved increased resilience (the ability to recover from infection), while populations at high elevation with few vectors have not undergone selection and remain susceptible. We investigated how experimentally elevated corticosterone affects the ability of high and low elevation male Amakihi to cope with avian malaria by measuring innate immunity, hematocrit, and malaria parasitemia. Corticosterone implants resulted in a decrease in hematocrit in high and low elevation birds but no changes to circulating natural antibodies or leukocytes. Overall, leukocyte count was higher in low than high elevation birds. Malaria infections were detected in a subset of low elevation birds. Infected individuals with corticosterone implants experienced a significant increase in circulating malaria parasites while untreated infected birds did not. Our results suggest that Amakihi innate immunity measured by natural antibodies and leukocytes is not sensitive to changes in corticosterone, and that high circulating corticosterone may reduce the ability of Amakihi to cope with infection via its effects on hematocrit and malaria parasite load. Understanding how glucocorticoids influence a host's ability to cope with introduced diseases provides new insight into the conservation of animals threatened by novel pathogens.


2021 ◽  
Vol 17 (9) ◽  
pp. 20210271
Author(s):  
Angela N. Theodosopoulos ◽  
Kathryn C. Grabenstein ◽  
Staffan Bensch ◽  
Scott A. Taylor

Parasite range expansions are a direct consequence of globalization and are an increasing threat to biodiversity. Here, we report a recent range expansion of the SGS1 strain of a highly invasive parasite, Plasmodium relictum , to two non-migratory passerines in North America . Plasmodium relictum is considered one of the world's most invasive parasites and causes the disease avian malaria: this is the first reported case of SGS1 in wild non-migratory birds on the continent. Using a long-term database where researchers report avian malaria parasite infections, we summarized our current understanding of the geographical range of SGS1 and its known hosts. We also identified the most likely geographical region of this introduction event using the MSP1 allele. We hypothesize that this introduction resulted from movements of captive birds and subsequent spillover to native bird populations, via the presence of competent vectors and ecological fitting. Further work should be conducted to determine the extent to which SGS1 has spread following its introduction in North America.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Veerayuth Kittichai ◽  
Morakot Kaewthamasorn ◽  
Suchansa Thanee ◽  
Rangsan Jomtarak ◽  
Kamonpob Klanboot ◽  
...  

AbstractThe infection of an avian malaria parasite (Plasmodium gallinaceum) in domestic chickens presents a major threat to the poultry industry because it causes economic loss in both the quality and quantity of meat and egg production. Computer-aided diagnosis has been developed to automatically identify avian malaria infections and classify the blood infection stage development. In this study, four types of deep convolutional neural networks, namely Darknet, Darknet19, Darknet19-448 and Densenet201 are used to classify P. gallinaceum blood stages. We randomly collected a dataset of 12,761 single-cell images consisting of three parasite stages from ten-infected blood films stained by Giemsa. All images were confirmed by three well-trained examiners. The study mainly compared several image classification models and used both qualitative and quantitative data for the evaluation of the proposed models. In the model-wise comparison, the four neural network models gave us high values with a mean average accuracy of at least 97%. The Darknet can reproduce a superior performance in the classification of the P. gallinaceum development stages across any other model architectures. Furthermore, the Darknet has the best performance in multiple class-wise classification, with average values of greater than 99% in accuracy, specificity, and sensitivity. It also has a low misclassification rate (< 1%) than the other three models. Therefore, the model is more suitable in the classification of P. gallinaceum blood stages. The findings could help us create a fast-screening method to help non-experts in field studies where there is a lack of specialized instruments for avian malaria diagnostics.


Author(s):  
Leila Nourani ◽  
Amir Asghari Baghkheirati ◽  
Mostafa Zargar ◽  
Vahid Karimi ◽  
Navid Dinparast Djadid
Keyword(s):  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jennifer R. Smetzer ◽  
Kristina L. Paxton ◽  
Eben H. Paxton

Abstract Background Movement of animals directly affects individual fitness, yet fine spatial and temporal resolution movement behavior has been studied in relatively few small species, particularly in the tropics. Nectarivorous Hawaiian honeycreepers are believed to be highly mobile throughout the year, but their fine-scale movement patterns remain unknown. The movement behavior of these crucial pollinators has important implications for forest ecology, and for mortality from avian malaria (Plasmodium relictum), an introduced disease that does not occur in high-elevation forests where Hawaiian honeycreepers primarily breed. Methods We used an automated radio telemetry network to track the movement of two Hawaiian honeycreeper species, the ʻapapane (Himatione sanguinea) and ʻiʻiwi (Drepanis coccinea). We collected high temporal and spatial resolution data across the annual cycle. We identified movement strategies using a multivariate analysis of movement metrics and assessed seasonal changes in movement behavior. Results Both species exhibited multiple movement strategies including sedentary, central place foraging, commuting, and nomadism , and these movement strategies occurred simultaneously across the population. We observed a high degree of intraspecific variability at the individual and population level. The timing of the movement strategies corresponded well with regional bloom patterns of ‘ōhi‘a (Metrosideros polymorpha) the primary nectar source for the focal species. Birds made long-distance flights, including multi-day forays outside the tracking array, but exhibited a high degree of fidelity to a core use area, even in the non-breeding period. Both species visited elevations where avian malaria can occur but exhibited little seasonal change in elevation (< 150 m) and regularly returned to high-elevation roosts at night. Conclusions This study demonstrates the power of automated telemetry to study complex and fine-scale movement behaviors in rugged tropical environments. Our work reveals a system in which birds can track shifting resources using a diverse set of movement behaviors and can facultatively respond to environmental change. Importantly, fidelity to high-elevation roosting sites minimizes nocturnal exposure to avian malaria for far-ranging individuals and is thus a beneficial behavior that may be under high selection pressure.


Sign in / Sign up

Export Citation Format

Share Document