scholarly journals Identifying Conformational Isomers of Organic Molecules in Solution via Unsupervised Clustering

Author(s):  
Veselina Marinova ◽  
Laurence Dodd ◽  
Song-Jun Lee ◽  
Geoffrey P. F. Wood ◽  
Ivan Marziano ◽  
...  
2021 ◽  
Author(s):  
Veselina Marinova ◽  
Laurence Dodd ◽  
Song-Jun Lee ◽  
Geoffrey P. F. Wood ◽  
Ivan Marziano ◽  
...  

<p>We present a systematic approach for the identification of statistically relevant conformational macrostates of organic molecules from molecular dynamics trajectories. The approach applies to molecules characterised by an arbitrary number of torsional degrees of freedom and enables the transferability of the macrostates definition across different environments. We formulate a dissimilarity measure between molecular configurations that incorporates information on the characteristic energetic cost associated with transitions along all relevant torsional degrees of freedom. Such metric is employed to perform unsupervised clustering of molecular configurations based on the fast search and find of density peaks algorithm. We apply this method to investigate the equilibrium conformational ensemble of Sildenafil, a conformationally complex pharmaceutical compound, in different environments including the crystal bulk, the gas phase and three different solvents (acetonitrile, 1-butanol, and toluene). We demonstrate that, while Sildenafil can adopt more than one hundred metastable conformational configurations, only 12 are significantly populated across all the environments investigated. Despite the complexity of the conformational space, we find that the most abundant conformers in solution are the closest to the conformers found in the most common Sildenafil crystal phase.</p>


2021 ◽  
Author(s):  
Veselina Marinova ◽  
Laurence Dodd ◽  
Song-Jun Lee ◽  
Geoffrey P. F. Wood ◽  
Ivan Marziano ◽  
...  

<p>We present a systematic approach for the identification of statistically relevant conformational macrostates of organic molecules from molecular dynamics trajectories. The approach applies to molecules characterised by an arbitrary number of torsional degrees of freedom and enables the transferability of the macrostates definition across different environments. We formulate a dissimilarity measure between molecular configurations that incorporates information on the characteristic energetic cost associated with transitions along all relevant torsional degrees of freedom. Such metric is employed to perform unsupervised clustering of molecular configurations based on the fast search and find of density peaks algorithm. We apply this method to investigate the equilibrium conformational ensemble of Sildenafil, a conformationally complex pharmaceutical compound, in different environments including the crystal bulk, the gas phase and three different solvents (acetonitrile, 1-butanol, and toluene). We demonstrate that, while Sildenafil can adopt more than one hundred metastable conformational configurations, only 12 are significantly populated across all the environments investigated. Despite the complexity of the conformational space, we find that the most abundant conformers in solution are the closest to the conformers found in the most common Sildenafil crystal phase.</p>


2020 ◽  
Author(s):  
Veselina Marinova ◽  
Laurence Dodd ◽  
Song-Jun Lee ◽  
Geoffrey P. F. Wood ◽  
Ivan Marziano ◽  
...  

<p>We present a systematic approach for the identification of statistically relevant conformational macrostates of organic molecules from molecular dynamics trajectories. The approach applies to molecules characterised by an arbitrary number of torsional degrees of freedom and enables the transferability of the macrostates definition across different environments. We formulate a dissimilarity measure between molecular configurations that incorporates information on the characteristic energetic cost associated with transitions along all relevant torsional degrees of freedom. Such metric is employed to perform unsupervised clustering of molecular configurations based on the fast search and find of density peaks algorithm. We apply this method to investigate the equilibrium conformational ensemble of Sildenafil, a conformationally complex pharmaceutical compound, in different environments including the crystal bulk, the gas phase and three different solvents (acetonitrile, 1-butanol, and toluene). We demonstrate that, while Sildenafil can adopt more than one hundred metastable conformational configurations, only 12 are significantly populated across all the environments investigated. Despite the complexity of the conformational space, we find that the most abundant conformers in solution are the closest to the conformers found in the most common Sildenafil crystal phase.</p>


2020 ◽  
Author(s):  
Veselina Marinova ◽  
Laurence Dodd ◽  
Song-Jun Lee ◽  
Geoffrey P. F. Wood ◽  
Ivan Marziano ◽  
...  

<p>We present a systematic approach for the identification of statistically relevant conformational macrostates of organic molecules from molecular dynamics trajectories. The approach applies to molecules characterised by an arbitrary number of torsional degrees of freedom and enables the transferability of the macrostates definition across different environments. We formulate a dissimilarity measure between molecular configurations that incorporates information on the characteristic energetic cost associated with transitions along all relevant torsional degrees of freedom. Such metric is employed to perform unsupervised clustering of molecular configurations based on the fast search and find of density peaks algorithm. We apply this method to investigate the equilibrium conformational ensemble of Sildenafil, a conformationally complex pharmaceutical compound, in different environments including the crystal bulk, the gas phase and three different solvents (acetonitrile, 1-butanol, and toluene). We demonstrate that, while Sildenafil can adopt more than one hundred metastable conformational configurations, only 12 are significantly populated across all the environments investigated. Despite the complexity of the conformational space, we find that the most abundant conformers in solution are the closest to the conformers found in the most common Sildenafil crystal phase.</p>


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
Douglas L. Dorset

The quantitative use of electron diffraction intensity data for the determination of crystal structures represents the pioneering achievement in the electron crystallography of organic molecules, an effort largely begun by B. K. Vainshtein and his co-workers. However, despite numerous representative structure analyses yielding results consistent with X-ray determination, this entire effort was viewed with considerable mistrust by many crystallographers. This was no doubt due to the rather high crystallographic R-factors reported for some structures and, more importantly, the failure to convince many skeptics that the measured intensity data were adequate for ab initio structure determinations.We have recently demonstrated the utility of these data sets for structure analyses by direct phase determination based on the probabilistic estimate of three- and four-phase structure invariant sums. Examples include the structure of diketopiperazine using Vainshtein's 3D data, a similar 3D analysis of the room temperature structure of thiourea, and a zonal determination of the urea structure, the latter also based on data collected by the Moscow group.


1989 ◽  
Vol 50 (C2) ◽  
pp. C2-33-C2-35 ◽  
Author(s):  
D. FENYÖ ◽  
B. U.R. SUNDQVIST ◽  
B. KARLSSON ◽  
R. E. JOHNSON

Sign in / Sign up

Export Citation Format

Share Document