Transfer Learning to CCSD(T): Accurate Anharmonic Frequencies from Machine Learning Models

Author(s):  
Silvan Käser ◽  
Eric D. Boittier ◽  
Meenu Upadhyay ◽  
Markus Meuwly
2021 ◽  
Author(s):  
Erik Otović ◽  
Marko Njirjak ◽  
Dario Jozinović ◽  
Goran Mauša ◽  
Alberto Michelini ◽  
...  

<p>In this study, we compared the performance of machine learning models trained using transfer learning and those that were trained from scratch - on time series data. Four machine learning models were used for the experiment. Two models were taken from the field of seismology, and the other two are general-purpose models for working with time series data. The accuracy of selected models was systematically observed and analyzed when switching within the same domain of application (seismology), as well as between mutually different domains of application (seismology, speech, medicine, finance). In seismology, we used two databases of local earthquakes (one in counts, and the other with the instrument response removed) and a database of global earthquakes for predicting earthquake magnitude; other datasets targeted classifying spoken words (speech), predicting stock prices (finance) and classifying muscle movement from EMG signals (medicine).<br>In practice, it is very demanding and sometimes impossible to collect datasets of tagged data large enough to successfully train a machine learning model. Therefore, in our experiment, we use reduced data sets of 1,500 and 9,000 data instances to mimic such conditions. Using the same scaled-down datasets, we trained two sets of machine learning models: those that used transfer learning for training and those that were trained from scratch. We compared the performances between pairs of models in order to draw conclusions about the utility of transfer learning. In order to confirm the validity of the obtained results, we repeated the experiments several times and applied statistical tests to confirm the significance of the results. The study shows when, within the set experimental framework, the transfer of knowledge brought improvements in terms of model accuracy and in terms of model convergence rate.<br><br>Our results show that it is possible to achieve better performance and faster convergence by transferring knowledge from the domain of global earthquakes to the domain of local earthquakes; sometimes also vice versa. However, improvements in seismology can sometimes also be achieved by transferring knowledge from medical and audio domains. The results show that the transfer of knowledge between other domains brought even more significant improvements, compared to those within the field of seismology. For example, it has been shown that models in the field of sound recognition have achieved much better performance compared to classical models and that the domain of sound recognition is very compatible with knowledge from other domains. We came to similar conclusions for the domains of medicine and finance. Ultimately, the paper offers suggestions when transfer learning is useful, and the explanations offered can provide a good starting point for knowledge transfer using time series data.</p>


Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Mohd Azraai Mohd Razman ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
...  

2021 ◽  
Author(s):  
George Pappy ◽  
Melissa Aczon ◽  
Randall Wetzel ◽  
David Ledbetter

BACKGROUND High Flow Nasal Cannula (HFNC) provides non-invasive respiratory support for critically ill children who may tolerate it more readily than other Non-Invasive (NIV) techniques such as Bilevel Positive Airway Pressure (BiPAP) and Continuous Positive Airway Pressure (CPAP). Moreover, HFNC may preclude the need for mechanical ventilation (intubation). Nevertheless, NIV or intubation may ultimately be necessary for certain patients. Timely prediction of HFNC failure can provide an indication for increasing respiratory support. OBJECTIVE This work developed and compared machine learning models to predict HFNC failure. METHODS A retrospective study was conducted using the Virtual Pediatric Intensive Care Unit database of Electronic Medical Records (EMR) of patients admitted to a tertiary pediatric ICU from January 2010 to February 2020. Patients <19 years old, without apnea, and receiving HFNC treatment were included. A Long Short-Term Memory (LSTM) model using 517 variables (vital signs, laboratory data and other clinical parameters) was trained to generate a continuous prediction of HFNC failure, defined as escalation to NIV or intubation within 24 hours of HFNC initiation. For comparison, seven other models were trained: a Logistic Regression (LR) using the same 517 variables, another LR using only 14 variables, and five additional LSTM-based models using the same 517 variables as the first LSTM and incorporating additional ML techniques (transfer learning, input perseveration, and ensembling). Performance was assessed using the area under the receiver operating curve (AUROC) at various times following HFNC initiation. The sensitivity, specificity, positive and negative predictive values (PPV, NPV) of predictions at two hours after HFNC initiation were also evaluated. These metrics were also computed in a cohort with primarily respiratory diagnoses. RESULTS 834 HFNC trials [455 training, 173 validation, 206 test] met the inclusion criteria, of which 175 [103, 30, 42] (21.0%) escalated to NIV or intubation. The LSTM models trained with transfer learning generally performed better than the LR models, with the best LSTM model achieving an AUROC of 0.78, vs 0.66 for the 14-variable LR and 0.71 for the 517-variable LR, two hours after initiation. All models except for the 14-variable LR achieved higher AUROCs in the respiratory cohort than in the general ICU population. CONCLUSIONS Machine learning models trained using EMR data were able to identify children at risk for failing HFNC within 24 hours of initiation. LSTM models that incorporated transfer learning, input data perseveration and ensembling showed improved performance than the LR and standard LSTM models.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi157-vi158 ◽  
Author(s):  
Leland Hu ◽  
Hyunsoo Yoon ◽  
Jennifer Eschbacher ◽  
Leslie Baxter ◽  
Kris Smith ◽  
...  

2020 ◽  
Vol 6 (45) ◽  
pp. eabd1356
Author(s):  
Zeyu Liu ◽  
Meng Jiang ◽  
Tengfei Luo

Electron properties are usually easier to obtain than phonon properties. The ability to leverage electron properties to help predict phonon properties can thus greatly benefit materials by design for applications like thermoelectrics and electronics. Here, we demonstrate the ability of using transfer learning (TL), where knowledge learned from training machine learning models on electronic bandgaps of 1245 semiconductors is transferred to improve the models, trained using only 124 data, for predicting various phonon properties (phonon bandgap, group velocity, and heat capacity). Compared to directly trained models, TL reduces the mean absolute errors of prediction by 65, 14, and 54% respectively, for the three phonon properties. The TL models are further validated using several semiconductors outside of the 1245 database. Results also indicate that TL can leverage not-so-accurate proxy properties, as long as they encode composition-property relation, to improve models for target properties, a notable feature to materials informatics in general.


2021 ◽  
Vol 3 (2) ◽  
pp. 318-332
Author(s):  
Amin Anjomshoaa ◽  
Edward Curry

The knowledge embodied in cognitive models of smart environments, such as machine learning models, is commonly associated with time-consuming and costly processes such as large-scale data collection, data labeling, network training, and fine-tuning of models. Sharing and reuse of these elaborated resources between intelligent systems of different environments, which is known as transfer learning, would facilitate the adoption of cognitive services for the users and accelerate the uptake of intelligent systems in smart building and smart city applications. Currently, machine learning processes are commonly built for intra-organization purposes and tailored towards specific use cases with the assumption of integrated model repositories and feature pools. Transferring such services and models beyond organization boundaries is a challenging task that requires human intervention to find the matching models and evaluate them. This paper investigates the potential of communication and transfer learning between smart environments in order to empower a decentralized and peer-to-peer ecosystem for seamless and automatic transfer of services and machine learning models. To this end, we explore different knowledge types in the context of smart built environments and propose a collaboration framework based on knowledge graph principles for describing the machine learning models and their corresponding dependencies.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


Sign in / Sign up

Export Citation Format

Share Document