Reduced Two-Electron Interactions in Anharmonic Molecular Vibrational Calculations Involving Localized Normal Coordinates

Author(s):  
Magnus W. D. Hanson-Heine
1989 ◽  
Vol 54 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Juan F. Arenas ◽  
Juan I. Marcos ◽  
Francisco J. Ramírez

The general quadratic force field for the in-plane vibrations of terephthalonitrile was calculated by the semi-empirical MINDO/3 method. This force field was refined to the frequencies observed experimentally for terephthalonitrile and isotopic shifts of terephthalonitrile-[15N2]. The refined frequencies reproduce the experimental data with errors less than 0.5%. The normal coordinates and the force field in internal coordinates were also calculated from the refined field.


2021 ◽  
Vol 7 (11) ◽  
pp. eabe4270 ◽  
Author(s):  
A. Ben Hayun ◽  
O. Reinhardt ◽  
J. Nemirovsky ◽  
A. Karnieli ◽  
N. Rivera ◽  
...  

It is a long-standing goal to create light with unique quantum properties such as squeezing and entanglement. We propose the generation of quantum light using free-electron interactions, going beyond their already ubiquitous use in generating classical light. This concept is motivated by developments in electron microscopy, which recently demonstrated quantum free-electron interactions with light in photonic cavities. Such electron microscopes provide platforms for shaping quantum states of light through a judicious choice of the input light and electron states. Specifically, we show how electron energy combs implement photon displacement operations, creating displaced-Fock and displaced-squeezed states. We develop the theory for consecutive electron-cavity interactions with a common cavity and show how to generate any target Fock state. Looking forward, exploiting the degrees of freedom of electrons, light, and their interaction may achieve complete control over the quantum state of the generated light, leading to novel light statistics and correlations.


2021 ◽  
Vol 103 (15) ◽  
Author(s):  
Zhijian Xie ◽  
Xinjian Wei ◽  
Shimin Cao ◽  
Yu Zhang ◽  
Shili Yan ◽  
...  

2003 ◽  
Vol 68 (24) ◽  
Author(s):  
Shaffique Adam ◽  
Piet W. Brouwer ◽  
Prashant Sharma

Sign in / Sign up

Export Citation Format

Share Document