scholarly journals Gaussian-Accelerated Molecular Dynamics with the Weighted Ensemble Method: A Hybrid Method Improves Thermodynamic and Kinetic Sampling

Author(s):  
Surl-Hee Ahn ◽  
Anupam A. Ojha ◽  
Rommie E. Amaro ◽  
J. Andrew McCammon
Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 334
Author(s):  
Shih-Ting Hong ◽  
Yu-Cheng Su ◽  
Yu-Jen Wang ◽  
Tian-Lu Cheng ◽  
Yeng-Tseng Wang

Humira is a monoclonal antibody that binds to TNF alpha, inactivates TNF alpha receptors, and inhibits inflammation. Neonatal Fc receptors can mediate the transcytosis of Humira–TNF alpha complex structures and process them toward degradation pathways, which reduces the therapeutic effect of Humira. Allowing the Humira–TNF alpha complex structures to dissociate to Humira and soluble TNF alpha in the early endosome to enable Humira recycling is crucial. We used the cytoplasmic pH (7.4), the early endosomal pH (6.0), and pKa of histidine side chains (6.0–6.4) to mutate the residues of complementarity-determining regions with histidine. Our engineered Humira (W1-Humira) can bind to TNF alpha in plasma at neutral pH and dissociate from the TNF alpha in the endosome at acidic pH. We used the constant-pH molecular dynamics, Gaussian accelerated molecular dynamics, two-dimensional potential mean force profiles, and in vitro methods to investigate the characteristics of W1-Humira. Our results revealed that the proposed Humira can bind TNF alpha with pH-dependent affinity in vitro. The W1-Humira was weaker than wild-type Humira at neutral pH in vitro, and our prediction results were close to the in vitro results. Furthermore, our approach displayed a high accuracy in antibody pH-dependent binding characteristics prediction, which may facilitate antibody drug design. Advancements in computational methods and computing power may further aid in addressing the challenges in antibody drug design.


Author(s):  
Nikolay Kondratyuk ◽  
Vsevolod Nikolskiy ◽  
Daniil Pavlov ◽  
Vladimir Stegailov

Classical molecular dynamics (MD) calculations represent a significant part of the utilization time of high-performance computing systems. As usual, the efficiency of such calculations is based on an interplay of software and hardware that are nowadays moving to hybrid GPU-based technologies. Several well-developed open-source MD codes focused on GPUs differ both in their data management capabilities and in performance. In this work, we analyze the performance of LAMMPS, GROMACS and OpenMM MD packages with different GPU backends on Nvidia Volta and AMD Vega20 GPUs. We consider the efficiency of solving two identical MD models (generic for material science and biomolecular studies) using different software and hardware combinations. We describe our experience in porting the CUDA backend of LAMMPS to ROCm HIP that shows considerable benefits for AMD GPUs comparatively to the OpenCL backend.


Sign in / Sign up

Export Citation Format

Share Document