Nonadiabatic Molecular Dynamics by Multiconfiguration Pair-Density Functional Theory

Author(s):  
Paul B. Calio ◽  
Donald G. Truhlar ◽  
Laura Gagliardi
2021 ◽  
Author(s):  
Paul Calio ◽  
Don Truhlar ◽  
Laura Gagliardi

We present the first implementation of multiconfiguration pair-density functional theory (MC-PDFT) ab initio molecular dynamics. MC-PDFT is a multireference electronic structure method that in many cases has a similar accuracy (or even better accuracy) than complete active space second order perturbation theory (CASPT2) at a significantly lower computational cost. In this work we introduced MC-PDFT analytical gradients into the SHARC molecular dynamics program for ab initio, nonadiabatic molecular dynamics simulations. We verify our implementation by examining the intersystem crossing dynamics of thioformaldehyde, and we observe excellent agreement with recent CASPT2 and experimental findings. Moreover, with MC-PDFT we could perform dynamics with an active space that was computationally too expensive for CASPT2.


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Author(s):  
Riddhish Pandharkar ◽  
Matthew R. Hermes ◽  
Christopher J. Cramer ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

Sign in / Sign up

Export Citation Format

Share Document