Patient-Specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery

2015 ◽  
Vol 59 (1) ◽  
pp. 2-15 ◽  
Author(s):  
Shibing Tang ◽  
Min Xie ◽  
Nan Cao ◽  
Sheng Ding
2016 ◽  
Vol 17 (2) ◽  
pp. 256 ◽  
Author(s):  
Mohammed Kawser Hossain ◽  
Ahmed Abdal Dayem ◽  
Jihae Han ◽  
Subbroto Kumar Saha ◽  
Gwang-Mo Yang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Guang-Yin Peng ◽  
Yang Lin ◽  
Jing-Jing Li ◽  
Ying Wang ◽  
Hao-Yue Huang ◽  
...  

Vascular disorders are complex diseases with high morbidity and mortality. Among them, the dilated macrovascular diseases (MVD), such as aortic aneurysm and aortic dissection, have presented a huge threat to human health. The pathogenesis of vascular diseases is mostly associated with property alteration of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). Studies have confirmed that induced pluripotent stem cells (iPSCs) can be proliferated and differentiated into other somatic cells, such as VECs and VSMCs. And patient-specific cells could provide detailed human-associated information in regard to pathogenesis or drug responses. In addition, differentiated ECs from iPSC have been widely used in disease modeling as a cell therapy. In this review, we mainly discussed the application of hiPSCs in investigating the pathological mechanism of different inherited vascular diseases and provide a comprehensive understanding of hiPSCs in the field of clinical diagnosis and gene therapy.


Sign in / Sign up

Export Citation Format

Share Document