scholarly journals Detection of Penicillin G Produced by Penicillium chrysogenum with Raman Microspectroscopy and Multivariate Curve Resolution-Alternating Least-Squares Methods

2020 ◽  
Vol 83 (11) ◽  
pp. 3223-3229
Author(s):  
Shumpei Horii ◽  
Masahiro Ando ◽  
Ashok Zachariah Samuel ◽  
Akira Take ◽  
Takuji Nakashima ◽  
...  
2020 ◽  
Author(s):  
Shumpei Horii ◽  
Masahiro Ando ◽  
Ashok Z. Samuel ◽  
Akira Take ◽  
Takuji Nakashima ◽  
...  

ABSTRACTRaman microspectroscopy is a minimally invasive technique that can identify molecular structure without labeling. In this study, we demonstrate in vivo detection of the bioactive compound penicillin G inside Penicillium chrysogenum KF425 fungus cells. Highly overlapped spectroscopic signatures acquired using Raman microspectroscopic imaging are analyzed using a multivariate curve resolution-alternating least squares (MCR-ALS) method to extract the pure spectra of individual molecular constituents. In addition to detecting multiple constituents such as proteins and lipids, we observe the subcellular localization of penicillin G like granule particle inside the fungus body. To date, there have been no reports of direct visualization of intracellular localization of penicillin G. The methodology we present in this article is expected to be applied as a screening tool for the production of bioactive compounds by microorganisms.


2019 ◽  
Vol 69 (2) ◽  
pp. 217-231 ◽  
Author(s):  
Ahmed Mostafa ◽  
Heba Shaaban

Abstract The study presents the application of multivariate curve resolution alternating least squares (MCR-ALS) with a correlation constraint for simultaneous resolution and quantification of ketoprofen, naproxen, paracetamol and caffeine as target analytes and triclosan as an interfering component in different water samples using UV-Vis spectrophotometric data. A multivariate regression model using the partial least squares regression (PLSR) algorithm was developed and calculated. The MCR-ALS results were compared with the PLSR obtained results. Both models were validated on external sample sets and were applied to the analysis of real water samples. Both models showed comparable and satisfactory results with the relative error of prediction of real water samples in the range of 1.70–9.75 % and 1.64–9.43 % for MCR-ALS and PLSR, resp. The obtained results show the potential of MCR-ALS with correlation constraint to be applied for the determination of different pharmaceuticals in complex environmental matrices.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Heba Shaaban ◽  
Ahmed Mostafa ◽  
Zahra Almatar ◽  
Reem Alsheef ◽  
Safia Alrubh

The quality of over-the-counter (OTC) pain relievers is important to ensure the safety of the marketed products in order to maintain the overall health care of patients. In this study, the multivariate curve resolution-alternating least squares (MCR-ALS) chemometric method was developed and validated for the resolution and quantification of the most commonly consumed OTC pain relievers (acetaminophen, acetylsalicylic acid, ibuprofen, naproxen, and caffeine) in commercial drug formulations. The analytical performance of the developed chemometric methods such as root mean square error of prediction, bias, standard error of prediction, relative error of prediction, and coefficients of determination was calculated for the developed model. The obtained results are linear with concentration in the range of 0.5–7 μg/mL for acetaminophen and 0.5–3.5 and 0.5–3 μg/mL for naproxen and caffeine, respectively, while the linearity ranges for acetyl salicylic acid and ibuprofen were 1–15 μg/mL. High values of coefficients of determination ≥0.9995 reflected high predictive ability of the developed model. Good recoveries ranging from 98.0% to 99.7% were obtained for all analytes with relative standard deviations (RSDs) not higher than 1.62%. The optimized method was successfully applied for the analysis of the studied drugs either in their single or coformulated pharmaceutical products without any separation step. The optimized method was also compared with a reported HPLC method using paired t-test and F-ratio at 95% confidence level, and the results showed no significant difference regarding accuracy and precision. The developed method is eco-friendly, simple, fast, and amenable for routine analysis. It could be used as a cost-effective alternative to chromatographic techniques for the analysis of the studied drugs in commercial formulations.


Sign in / Sign up

Export Citation Format

Share Document