penicillium chrysogenum
Recently Published Documents


TOTAL DOCUMENTS

1146
(FIVE YEARS 146)

H-INDEX

57
(FIVE YEARS 6)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Qi Yang ◽  
Wenli Lin ◽  
Jiawei Xu ◽  
Nan Guo ◽  
Jiachen Zhao ◽  
...  

Bioreactor scale-up from the laboratory scale to the industrial scale has always been a pivotal step in bioprocess development. However, the transition of a bioeconomy from innovation to commercialization is often hampered by performance loss in titer, rate and yield. These are often ascribed to temporal variations of substrate and dissolved oxygen (for instance) in the environment, experienced by microorganisms at the industrial scale. Oscillations in dissolved oxygen (DO) concentration are not uncommon. Furthermore, these fluctuations can be exacerbated with poor mixing and mass transfer limitations, especially in fermentations with filamentous fungus as the microbial cell factory. In this work, the response of glucose-limited chemostat cultures of an industrial Penicillium chrysogenum strain to different dissolved oxygen levels was assessed under both DO shift-down (60% → 20%, 10% and 5%) and DO ramp-down (60% → 0% in 24 h) conditions. Collectively, the results revealed that the penicillin productivity decreased as the DO level dropped down below 20%, while the byproducts, e.g., 6-oxopiperidine-2-carboxylic acid (OPC) and 6-aminopenicillanic acid (6APA), accumulated. Following DO ramp-down, penicillin productivity under DO shift-up experiments returned to its maximum value in 60 h when the DO was reset to 60%. The result showed that a higher cytosolic redox status, indicated by NADH/NAD+, was observed in the presence of insufficient oxygen supply. Consistent with this, flux balance analysis indicated that the flux through the glyoxylate shunt was increased by a factor of 50 at a DO value of 5% compared to the reference control, favoring the maintenance of redox status. Interestingly, it was observed that, in comparison with the reference control, the penicillin productivity was reduced by 25% at a DO value of 5% under steady state conditions. Only a 14% reduction in penicillin productivity was observed as the DO level was ramped down to 0. Furthermore, intracellular levels of amino acids were less sensitive to DO levels at DO shift-down relative to DO ramp-down conditions; this difference could be caused by different timescales between turnover rates of amino acid pools (tens of seconds to minutes) and DO switches (hours to days at steady state and minutes to hours at ramp-down). In summary, this study showed that changes in oxygen availability can lead to rapid metabolite, flux and productivity responses, and dynamic DO perturbations could provide insight into understanding of metabolic responses in large-scale bioreactors.


2021 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
Rebeca Domínguez-Santos ◽  
Katarina Kosalková ◽  
Isabel-Clara Sánchez-Orejas ◽  
Carlos Barreiro ◽  
Yolanda Pérez-Pertejo ◽  
...  

The filamentous fungus Penicillium chrysogenum (recently reidentified as Penicillium rubens) is used in the industrial production of the b-lactam antibiotic penicillin. There are several mechanisms regulating the production of this antibiotic, acting both at the genetic and epigenetic levels, the latter including the modification of chromatin by methyltransferases. S-adenosyl-L-methionine (AdoMet) is the main donor of methyl groups for methyltransferases. In addition, it also acts as a donor of aminopropyl groups during the biosynthesis of polyamines. AdoMet is synthesized from L-methionine and ATP by AdoMet-synthetase. In silico analysis of the P. chrysogenum genome revealed the presence of a single gene (Pc16g04380) encoding a putative protein with high similarity to well-known AdoMet-synthetases. Due to the essential nature of this gene, functional analysis was carried out using RNAi-mediated silencing techniques. Knock-down transformants exhibited a decrease in AdoMet, S-adenosyl-L-homocysteine (AdoHcy), spermidine and benzylpenicillin levels, whereas they accumulated a yellow-orange pigment in submerged cultures. On the other hand, overexpression led to reduced levels of benzylpenicillin, thereby suggesting that the AdoMet synthetase, in addition to participate in primary metabolism, also controls secondary metabolism in P. chrysogenum.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2520
Author(s):  
Vera V. Yaderets ◽  
Nataliya V. Karpova ◽  
Elena V. Glagoleva ◽  
Alexander I. Ovchinnikov ◽  
Kseniya S. Petrova ◽  
...  

Sclerotinia sclerotiorum (Lib.) de Bary is a plant pathogen with a wide host range, which causes significant yield and storage losses of edible roots and other plant products. Due to its ability to sclerotia formation, the efficient control of this pathogen is complicated. The study of five Bacillus strains (B. subtilis VKM B-3154D, VKM B-3155D, VKM B-3505D, VKM B-2998D, and B. amyloliquefaciens VKM B-3153D) showed their ability to produce polyene antibiotics suppressing the growth and development of plant pathogenic fungi. The maximum concentration of polyene compounds was revealed for B. subtilis VKM B-2998D. A high in vitro antifungal activity of a dry mycelium biomass (DMP) of Penicillium chrysogenum VKM F-4876D, B. subtilis VKM B-2998D, and their combination has been demonstrated in relation to S. sclerotiorum. A combined application of DMP (0.3 g/L) and azoxystrobin at low dosage (2.5 mg/L) showed a high suppressing activity towards S. sclerotiorum (100% growth inhibition) including inhibition of a sclerotia formation that may be useful for the development of efficient methods of crop protection against this plant pathogen. A high performance liquid chromatography (HPLC) analysis of DMP revealed the presence of mevastatin suggesting the mechanism of the DMP antifungal activity is based on the blocking of the ergosterol (the main component of fungal cell walls) biosynthesis. The results of the study provide a prerequisite to the development of biopreparations to control S. sclerotiorum, whose use may provide a reduction of concentrations of fungicides used in agriculture and the corresponding reduction of their negative xenobiotic impact on the environment and recovery of the ecological balance in the soil.


CHEST Journal ◽  
2021 ◽  
Vol 160 (4) ◽  
pp. A307-A308
Author(s):  
Gabriel Rios ◽  
Sara Barillas Jose Castillo ◽  
angel soto ◽  
MARIA EUGENIA CHOC DE AJANEL ◽  
Jose Aguilar ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 2051
Author(s):  
Camille Marchal ◽  
Joaquim Germain ◽  
Muriel Raveton ◽  
Blandine Lyonnard ◽  
Cindy Arnoldi ◽  
...  

Polychlorinated biphenyls (PCBs) belong to the organic pollutants that are toxic to humans and harmful to environments. Numerous studies dealing with the impact of PCBs on soil microorganisms have focused on bacterial communities. The effects of PCBs on fungal communities in three different PCB-polluted soils from former industrial sites were investigated using high-throughput sequencing of the internal transcribed spacer 1 region. Significant differences in fungal alpha diversity were observed mainly due to soil physico-chemical properties. PCBs only influenced the richness of the fungal communities by increasing it. Fungal composition was rather strongly influenced by both PCBs and soil properties, resulting in different communities associated with each soil. Sixteen Ascomycota species were present in all three soils, including Stachybotrys chartarum, Fusarium oxysporum, Penicillium canescens, Penicillium chrysogenum,Penicillium citrosulfuratum and Penicillium brevicompactum, which are usually found in PCB-polluted soils, and Fusarium solani, Penicillium canescens, Penicillium citrosulfuratum and Penicillium chrysogenum, which are known PCB degraders. This study demonstrated that PCBs influence the richness and the composition of fungal communities. Their influence, associated with that of soil physico-chemical properties, led to distinct fungal communities, but with sixteen species common to the three soils which could be considered as ubiquitous species in PCB-polluted soils.


Sign in / Sign up

Export Citation Format

Share Document