Stereochemistries and Biological Properties of Oligomycin A Diels–Alder Adducts

Author(s):  
Olga A. Omelchuk ◽  
Vadim I. Malyshev ◽  
Michael G. Medvedev ◽  
Lyudmila N. Lysenkova ◽  
Nikita M. Belov ◽  
...  
2018 ◽  
Vol 15 (1) ◽  
pp. 84-104 ◽  
Author(s):  
Andre F. Constantino ◽  
Carla S. Francisco ◽  
Diana C. Cubides-Roman ◽  
Valdemar Lacerda

Background: The Hetero-Diels-Alder reaction (HDAR) is a method extensively used in organic chemistry as a tool in the synthesis of innumerous polycyclic compounds in particular nitrogen compounds, presents in many natural products, medicinally relevant substances and organic materials. The literature describes innumerable studies of HDAR using classic methods and modern developments such as reactions on the solid phase, the use of catalysts, transformations in aqueous solution and under microwaves. Objective: This review describes a variety of HDAR focused on obtaining nitrogen-containing compounds of considerable chemical and biological interest, and highlighting reported biological activity. Conclusion: This review has shown the importance of the HDA reaction as a tool of organic chemistry in the synthesis of nitrogen compounds. This type of reaction presents important properties including bond-forming economy, high regio- and stereoselectivities and thus provides highly efficient routes to access a wide range of polycyclic compounds. In addition to the variety of nitrogen compounds synthetized successfully by this method, they present relevant biological properties.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42287-42296
Author(s):  
Diego R. Merchán-Arenas ◽  
Felipe Sojo ◽  
Francisco Arvelo ◽  
Vladimir V. Kouznetsov

We synthesized a series of dihydroisoindolo[2,1-a]quinolin-11-ones using the imino Diels–Alder reaction and evaluated their biological properties, finding a new hit in anticancer research.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lisa Maria Haiber ◽  
Markus Kufleitner ◽  
Valentin Wittmann

The inverse electron-demand Diels-Alder (IEDDA or DAinv) reaction is an emerging bioorthogonal ligation reaction that finds application in all areas of chemistry and chemical biology. In this review we highlight its application in metabolic glycoengineering (MGE). MGE is a versatile tool to introduce unnatural sugar derivatives that are modified with a chemical reporter group into cellular glycans. The IEDDA reaction can then be used to modify the chemical reporter group allowing, for instance, the visualization or isolation of glycoconjugates. During the last years, many different sugar derivatives as well as reporter groups have been published. These probes are summarized, and their chemical and biological properties are discussed. Furthermore, we discuss examples of MGE and subsequent IEDDA reaction that highlight its suitability for application within living systems.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


2015 ◽  
Vol 57 ◽  
pp. 177-187 ◽  
Author(s):  
Jennifer N. Byrum ◽  
William Rodgers

Since the inception of the fluid mosaic model, cell membranes have come to be recognized as heterogeneous structures composed of discrete protein and lipid domains of various dimensions and biological functions. The structural and biological properties of membrane domains are represented by CDM (cholesterol-dependent membrane) domains, frequently referred to as membrane ‘rafts’. Biological functions attributed to CDMs include signal transduction. In T-cells, CDMs function in the regulation of the Src family kinase Lck (p56lck) by sequestering Lck from its activator CD45. Despite evidence of discrete CDM domains with specific functions, the mechanism by which they form and are maintained within a fluid and dynamic lipid bilayer is not completely understood. In the present chapter, we discuss recent advances showing that the actomyosin cytoskeleton has an integral role in the formation of CDM domains. Using Lck as a model, we also discuss recent findings regarding cytoskeleton-dependent CDM domain functions in protein regulation.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
N Miceli ◽  
MF Taviano ◽  
A Trovato ◽  
R De Pasquale ◽  
P Maimone ◽  
...  

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
D Moreira ◽  
F Candido ◽  
M Siqueira ◽  
C Quaresma ◽  
E Guimarâes ◽  
...  

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
CA Aguiar ◽  
AM Ferreira ◽  
R Oliveira ◽  
F Baltazar ◽  
A Cunha

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
S Combrinck ◽  
J Linde ◽  
A Ludwiczuk ◽  
S Van Vuuren ◽  
J Van Rooy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document