scholarly journals Application of the Inverse-Electron-Demand Diels-Alder Reaction for Metabolic Glycoengineering

2021 ◽  
Vol 9 ◽  
Author(s):  
Lisa Maria Haiber ◽  
Markus Kufleitner ◽  
Valentin Wittmann

The inverse electron-demand Diels-Alder (IEDDA or DAinv) reaction is an emerging bioorthogonal ligation reaction that finds application in all areas of chemistry and chemical biology. In this review we highlight its application in metabolic glycoengineering (MGE). MGE is a versatile tool to introduce unnatural sugar derivatives that are modified with a chemical reporter group into cellular glycans. The IEDDA reaction can then be used to modify the chemical reporter group allowing, for instance, the visualization or isolation of glycoconjugates. During the last years, many different sugar derivatives as well as reporter groups have been published. These probes are summarized, and their chemical and biological properties are discussed. Furthermore, we discuss examples of MGE and subsequent IEDDA reaction that highlight its suitability for application within living systems.

2019 ◽  
Vol 15 ◽  
pp. 584-601 ◽  
Author(s):  
Jessica Hassenrück ◽  
Valentin Wittmann

Cyclopropenes have been proven valuable chemical reporter groups for metabolic glycoengineering (MGE). They readily react with tetrazines in an inverse electron-demand Diels–Alder (DAinv) reaction, a prime example of a bioorthogonal ligation reaction, allowing their visualization in biological systems. Here, we present a comparative study of six cyclopropene-modified hexosamine derivatives and their suitability for MGE. Three mannosamine derivatives in which the cyclopropene moiety is attached to the sugar by either an amide or a carbamate linkage and that differ by the presence or absence of a stabilizing methyl group at the double bond have been examined. We determined their DAinv reaction kinetics and their labeling intensities after metabolic incorporation. To determine the efficiencies by which the derivatives are metabolized to sialic acids, we synthesized and investigated the corresponding cyclopropane derivatives because cyclopropenes are not stable under the analysis conditions. From these experiments, it became obvious that N-(cycloprop-2-en-1-ylcarbonyl)-modified (Cp-modified) mannosamine has the highest metabolic acceptance. However, carbamate-linked N-(2-methylcycloprop-2-en-1-ylmethyloxycarbonyl)-modified (Cyoc-modified) mannosamine despite its lower metabolic acceptance results in the same cell-surface labeling intensity due to its superior reactivity in the DAinv reaction. Based on the high incorporation efficiency of the Cp derivative we synthesized and investigated two new Cp-modified glucosamine and galactosamine derivatives. Both compounds lead to comparable, distinct cell-surface staining after MGE. We further found that the amide-linked Cp-modified glucosamine derivative but not the Cyoc-modified glucosamine is metabolically converted to the corresponding sialic acid.


2017 ◽  
Vol 41 (21) ◽  
pp. 12392-12396 ◽  
Author(s):  
Siting Ni ◽  
Jun Zhu ◽  
Mohamed Amine Mezour ◽  
R. Bruce Lennox

A thermally-mild method for covalent binding of SWCNTs to AuNRs, based on an inverse-electron-demand Diels–Alder reaction, is established and discussed.


2021 ◽  
Author(s):  
Tingting Zhou ◽  
Anquan Zheng ◽  
Luqiong Huo ◽  
Changgeng Li ◽  
Haibo Tan ◽  
...  

Driven by bioinspiration and appreciation of the structure of ericifolione, a biomimetic tautomerization/intermolecular inverse-electron-demand hetero Diels-Alder reaction cascade sequence promoted by sodium acetate to rapidly construct sterically hindered dihydropyran scaffolds...


Sign in / Sign up

Export Citation Format

Share Document