Characterization of Portuguese Propolis: Unraveling Biological Properties

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
CA Aguiar ◽  
AM Ferreira ◽  
R Oliveira ◽  
F Baltazar ◽  
A Cunha
2020 ◽  
Vol 3 (12) ◽  
pp. 8361-8374
Author(s):  
Silvia Biggi ◽  
Giulia A. Bassani ◽  
Valentina Vincoli ◽  
Daniele Peroni ◽  
Valerio Bonaldo ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1217
Author(s):  
Ewa Jończyk-Matysiak ◽  
Barbara Owczarek ◽  
Ewa Popiela ◽  
Kinga Świtała-Jeleń ◽  
Paweł Migdał ◽  
...  

The aim of this study was the isolation and characterization, including the phage effect on honeybees in laboratory conditions, of phages active against Paenibacillus larvae, the causative agent of American Foulbrood—a highly infective and easily spreading disease occurring in honeybee larva, and subsequently the development of a preparation to prevent and treat this dangerous disease. From the tested material (over 2500 samples) 35 Paenibacillus spp. strains were obtained and used to search for phages. Five phages specific to Paenibacillus were isolated and characterized (ultrastructure, morphology, biological properties, storage stability, and genome sequence). The characteristics were performed to obtain knowledge of their lytic potential and compose the final phage cocktail with high antibacterial potential and intended use of future field application. Preliminary safety studies have also been carried out on healthy bees, which suggest that the phage preparation administered is harmless.


2002 ◽  
Vol 147 (4) ◽  
pp. 745-762 ◽  
Author(s):  
S. Hauser ◽  
M. Stevens ◽  
M. Beuve ◽  
O. Lemaire

2010 ◽  
Vol 16 (1) ◽  
pp. 89-95
Author(s):  
Mihaela Mocanu

The sulfonamidic moiety is much encountered in structures of bioactive compounds. In the present paper the studies on the sulfonamidated aryloxyalkylcarboxylic acids are extended by their attaching on certain substrata able to confer some special biological properties to the final products, such as anti-tumor and antioxidant actions useful in treating inflammatory processes, ulcer, convulsions and diabetes, as well as a herbicidal action. The stepwise syntheses of the sulfonamidated aryloxyalkylcarboxylic acid derivatives and their characterization by elemental analysis data and IR, 1H-NMR and UV-Vis spectral measurements are described. The newly obtained compounds could show potential pharmaceutical and herbicide properties.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 54
Author(s):  
Joko Tri Wibowo ◽  
Matthias Y. Kellermann ◽  
Lars-Erik Petersen ◽  
Yustian R. Alfiansah ◽  
Colleen Lattyak ◽  
...  

Melanin is a widely distributed and striking dark-colored pigment produced by countless living organisms. Although a wide range of bioactivities have been recognized, there are still major constraints in using melanin for biotechnological applications such as its fragmentary known chemical structure and its insolubility in inorganic and organic solvents. In this study, a bacterial culture of Streptomyces cavourensis SV 21 produced two distinct forms of melanin: (1) a particulate, insoluble form as well as (2) a rarely observed water-soluble form. The here presented novel, acid-free purification protocol of purified particulate melanin (PPM) and purified dissolved melanin (PDM) represents the basis for an in-depth comparison of their physicochemical and biological properties, which were compared to the traditional acid-based precipitation of melanin (AM) and to a synthetic melanin standard (SM). Our data show that the differences in solubility between PDM and PPM in aqueous solutions may be a result of different adjoining cation species, since the soluble PDM polymer is largely composed of Mg2+ ions and the insoluble PPM is dominated by Ca2+ ions. Furthermore, AM shared most properties with SM, which is likely attributed to a similar, acid-based production protocol. The here presented gentler approach of purifying melanin facilitates a new perspective of an intact form of soluble and insoluble melanin that is less chemical altered and thus closer to its original biological form.


2019 ◽  
Author(s):  
chiara casella ◽  
Claudia Metzler-Baddeley ◽  
Derek Jones ◽  
Ilona Lipp

Huntington’s disease (HD) is a genetic neurodegenerative disorder, characterised by atrophy of the neostriatum, and cortical grey matter abnormalities. White matter (WM) alterations have recently been identified as a relevant pathophysiological feature of HD, but the etiology of WM degeneration, and its role in disease pathogenesis and progression remain unclear. An increasing body of research suggests that WM changes in HD are due to alterations in myelin-associated biological processes at the cellular and molecular level. This review first discusses evidence from neurochemical studies lending support to the ‘De-myelination hypothesis’ of HD, and pointing towards a role for aberrant myelination and changes in oligodendrocytes in HD WM. Next, evidence from neuroimaging studies is reviewed, the limitations of the described methodologies are discussed and suggested interpretations of findings from published studies are challenged. Although our understanding of HD-associated pathological changes in the brain will increasingly rely on neuroimaging techniques, the shortcomings of these methodologies must not be forgotten. Advances in MRI techniques and tissue modeling will enable a better characterization of the biological properties of WM microstructure, and will allow more specific monitoring of longitudinal changes noninvasively. This, in turn, will provide insight into disease pathogenesis and progression and facilitate the identification of disease-related biomarkers and the specification of outcome measures in clinical trials.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450049 ◽  
Author(s):  
CIJUN SHUAI ◽  
ZHONGZHENG MAO ◽  
ZIKAI HAN ◽  
SHUPING PENG ◽  
ZHENG LI

Calcium silicate ( CaSiO 3) is a promising material due to its favorable biological properties. However, it was difficult to fabricate ceramic scaffolds with interconnected porous structure via conventional technology. In present study, CaSiO 3 scaffolds with totally interconnected pores were fabricated via selective laser sintering (SLS). The microstructure, mechanical and biological properties were examined. The results revealed that the powder gradually fused together with the reduction of voids and the elimination of particle boundary as the laser power increased in the range of 3–15 W with scanning electron microscope. Meanwhile the low-temperature phase (β- CaSiO 3) transformed into high-temperature phase (α- CaSiO 3) gradually, which decreased the mechanical properties of the obtained scaffolds. Besides, the compressive strength increased from 12.9 ± 2.34 MPa to 18.19 ± 1.24 MPa (the laser power is 12 w) and then decreased gradually with increasing laser power. In vitro biological properties of CaSiO 3 scaffolds sintered under optimal conditions indicated that the distribution of apatite mineralization became uniform as the amount of them increased after being immersed in simulated body fluids. In the meantime, the thin cytoplasmic extensions of MG-63 cells increased until formed a dense cell layer after 1–5 days of cell culture. The results suggested that the CaSiO 3 scaffold fabricated via SLS has potential application for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document