chemical reporter
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiajia Wang ◽  
Biao Dou ◽  
Lu Zheng ◽  
Wei Cao ◽  
Peiyu Dong ◽  
...  

Galactose is a naturally occurring monosaccharide used to build complex glycans that has not been targeted for labeling as a metabolic reporter. Here, we characterize the cellular modification of proteins by using Ac46AzGal in a dose- and time-dependent manner. It is noted that a vast majority of this labeling of Ac46AzGal occurs intracellularly in a range of mammalian cells. We also provided evidence that this labeling is dependent on not only the enzymes of OGT responsible for O-GlcNAcylation but also the enzymes of GALT and GALE in the Leloir pathway. Notably, we discover that Ac46AzGal is not the direct substrate of OGT, and the labeling results may attribute to UDP-6AzGlc after epimerization of UDP-6AzGal via GALE. Together, these discoveries support the conclusion that Ac46AzGal as an analogue of galactose could metabolically label intracellular O-glycosylation modification, raising the possibility of characterization with impaired functions of the galactose metabolism in the Leloir pathway under certain conditions, such as galactosemias.


2021 ◽  
pp. 101272
Author(s):  
Krithika P. Karthigeyan ◽  
Lizhi Zhang ◽  
David R. Loiselle ◽  
Timothy A.J. Haystead ◽  
Menakshi Bhat ◽  
...  

Author(s):  
Kathryn E. Huxley ◽  
Lianne I. Willems

Glycans play essential roles in a range of cellular processes and have been shown to contribute to various pathologies. The diversity and dynamic nature of glycan structures and the complexities of glycan biosynthetic pathways make it challenging to study the roles of specific glycans in normal cellular function and disease. Chemical reporters have emerged as powerful tools to characterise glycan structures and monitor dynamic changes in glycan levels in a native context. A variety of tags can be introduced onto specific monosaccharides via the chemical modification of endogenous glycan structures or by metabolic or enzymatic incorporation of unnatural monosaccharides into cellular glycans. These chemical reporter strategies offer unique opportunities to study and manipulate glycan functions in living cells or whole organisms. In this review, we discuss recent advances in metabolic oligosaccharide engineering and chemoenzymatic glycan labelling, focusing on their application to the study of mammalian O-linked glycans. We describe current barriers to achieving glycan labelling specificity and highlight innovations that have started to pave the way to overcome these challenges.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lisa Maria Haiber ◽  
Markus Kufleitner ◽  
Valentin Wittmann

The inverse electron-demand Diels-Alder (IEDDA or DAinv) reaction is an emerging bioorthogonal ligation reaction that finds application in all areas of chemistry and chemical biology. In this review we highlight its application in metabolic glycoengineering (MGE). MGE is a versatile tool to introduce unnatural sugar derivatives that are modified with a chemical reporter group into cellular glycans. The IEDDA reaction can then be used to modify the chemical reporter group allowing, for instance, the visualization or isolation of glycoconjugates. During the last years, many different sugar derivatives as well as reporter groups have been published. These probes are summarized, and their chemical and biological properties are discussed. Furthermore, we discuss examples of MGE and subsequent IEDDA reaction that highlight its suitability for application within living systems.


Author(s):  
Clémence Simon ◽  
Cédric Lion ◽  
Hania Ahouari ◽  
Hervé Vezin ◽  
Simon Hawkins ◽  
...  

Bioorthogonal chemical reporter strategy can be successfully combined with EPR spectroscopy in plant tissues to detect the incorporation of a tagged monolignol into the lignin polymer.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4501
Author(s):  
Angelina Kasprowicz ◽  
Corentin Spriet ◽  
Christine Terryn ◽  
Vincent Rigolot ◽  
Stephan Hardiville ◽  
...  

Monitoring glycosylation changes within cells upon response to stimuli remains challenging because of the complexity of this large family of post-translational modifications (PTMs). We developed an original tool, enabling labeling and visualization of the cell cycle key-regulator β-catenin in its O-GlcNAcylated form, based on intramolecular Förster resonance energy transfer (FRET) technology in cells. We opted for a bioorthogonal chemical reporter strategy based on the dual-labeling of β-catenin with a green fluorescent protein (GFP) for protein sequence combined with a chemically-clicked imaging probe for PTM, resulting in a fast and easy to monitor qualitative FRET assay. We validated this technology by imaging the O-GlcNAcylation status of β-catenin in HeLa cells. The changes in O-GlcNAcylation of β-catenin were varied by perturbing global cellular O-GlcNAc levels with the inhibitors of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Finally, we provided a flowchart demonstrating how this technology is transposable to any kind of glycosylation.


Author(s):  
Angelina Kasprowicz ◽  
Corentin Spriet ◽  
Christine Terryn ◽  
Matthew G. Alteen ◽  
Tony Lefebvre ◽  
...  

Monitoring glycosylation changes within cells upon response to stimuli remains challenging because of the complexity of this large family of post-translational modifications (PTMs). We have developed an original tool enabling labeling and visualization of the cell cycle key-regulator b-catenin in its O-GlcNAcylated form based on intramolecular Förster resonance energy transfer (FRET) technology in cells. We opted for a bioorthogonal chemical reporter strategy based on the dual-labeling of b-catenin with a green fluorescent protein (GFP) for protein sequence combined with a chemically-clicked imaging probe for PTM resulting in a fast and easy to monitor qualitative FRET assay. We validated this technology by imaging the O-GlcNAcylation status of b-catenin in HeLa cells. Moreover, the changes in O-GlcNAcylation of b-catenin were varied by perturbing global cellular O-GlcNAc levels with inhibitors of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Finally, we provided a flowchart demonstrating how this technology is transposable to any kind of glycosylation.


Sign in / Sign up

Export Citation Format

Share Document