Methane to Methanol Conversion Facilitated by Anionic Transition Metal Centers: The Case of Fe, Ni, Pd, and Pt

Author(s):  
Safaa Sader ◽  
Evangelos Miliordos
2021 ◽  
Author(s):  
Daniyal Kiani ◽  
Sagar Sourav ◽  
Yadan Tang ◽  
Jonas Baltrusaitis ◽  
Israel E. Wachs

The literature on methane dehydroaromatization (MDA) to benzene using ZSM-5 supported, group V–VIII transition metal-based catalysts (MOx/ZSM-5) is critically reviewed with a focus on in situ and operando molecular insights.


2021 ◽  
Author(s):  
Kinga Mlekodaj ◽  
Mariia Lemishka ◽  
Stepan Sklenak ◽  
Jiri Dedecek ◽  
Edyta Tabor

Here we demonstrate for the first time the splitting of dioxygen at RT over distant binuclear transition metal (M = Ni, Mn, and Co) centers stabilized in ferrierite zeolite. Cleaved...


2005 ◽  
Vol 17 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Wen-Ming Chang ◽  
Sue-Lein Wang

2015 ◽  
Vol 11 ◽  
pp. 2038-2056 ◽  
Author(s):  
Lorenzo Piola ◽  
Fady Nahra ◽  
Steven P Nolan

Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.


Author(s):  
Wenlai Han

: Migratory insertion is a fundamental organometallic transformation that enables the functionalization of an unsaturated bond. Recent reports on catalytic hydroamination provide evidence that supports an intermolecular migratory insertion pathway featuring alkene insertion into metal-nitrogen (M-N) bonds. This article presents factors influencing the rate of migratory insertion in late-transition metal-catalyzed hydroamination, including steric and electronic effects from ligands, alkenes, and metal centers, along with stabilization from coordinated amine intermediates and ordered transition states.


1983 ◽  
Vol 38 (11) ◽  
pp. 1392-1398 ◽  
Author(s):  
Wolfgang A. Herrmann ◽  
Johann Plank ◽  
John L. Hubbard ◽  
Gangolf W. Kriechbaum ◽  
Willibald Kalcher ◽  
...  

Abstract Carbene transfer from aliphatic diazoalkanes upon coordinatively unsaturated metal centers is a general synthetic concept that provides straight-forward routes into organo-metallic hydrocarbon chemistry. A comparison focussing on several key reactions of general applicability demonstrates that mononuclear organometal substrates add carbenes that may act as bridging ligands (e.g., compound 6) if they arise from ω,ω'-bisdiazoalkanes. By way of contrast, metal-metal double bonds cleanly form dimetallacyclo-propane-type derivatives under very mild conditions (7-9). The broadest variety of structures is finally encountered with metal-metal triply bonded precursors such as the molybdenum compounds 3: here, the initial diazoalkane adducts are subject to further rearrangement processes commonly leading to metal-metal single bonds (11) or causing irreversible cleavage of the dinuclear metal systems (10).


Sign in / Sign up

Export Citation Format

Share Document