Solvated Electron in Acetonitrile: Radiation Yield, Absorption Spectrum, and Equilibrium between Cavity- and Solvent-Localized States

Author(s):  
David C. Grills ◽  
Sergei V. Lymar
1998 ◽  
Vol 76 (4) ◽  
pp. 411-413
Author(s):  
Yixing Zhao ◽  
Gordon R Freeman

The energy and asymmetry of the optical absorption spectrum of solvated electrons, es- , change in a nonlinear fashion on changing the solvent through the series HOH, CH3OH, CH3CH3OH, (CH3)2CHOH, (CH3)3COH. The ultimate, quantum-statistical mechanical, interpretation of solvated electron spectra is needed to describe the solvent dependence. The previously reported optical spectrum of es- in tert-butanol was somewhat inaccurate, due to a small amount of water in the alcohol and to limitations of the infrared light detector. The present note records the remeasured spectrum and its temperature dependence. The value of the energy at the absorption maximum (EAmax) is 155 zJ (0.97 eV) at 299 K and 112 zJ (0.70 eV) at 338 K; the corresponding values of G epsilon max (10-22 m2 aJ-1) are 1.06 and 0.74. These unusually large changes are attributed to the abnormally rapid decrease of dielectric permittivity of tert-butanol with increasing temperature. The band asymmetry at 299 K is Wb/Wr = 1.8.Key words: optical absorption spectrum, solvated electron, solvent effects, tert-butanol, temperature dependence.


1995 ◽  
Vol 73 (1) ◽  
pp. 117-122 ◽  
Author(s):  
J.-P. Jay-Gerin ◽  
J. Chevrel ◽  
C. Ferradini ◽  
E. Ray ◽  
M.H. Klapper ◽  
...  

The optical absorption spectrum of the solvated electron (es−) in liquid hexane-1,2,6-triol has been measured by nanosecond pulse radiolysis at different temperatures (10–40 °C) to investigate the influence of high solvent viscosity values on the spectral and kinetic properties of es−. The wavelength at the absorption maximum, λmax, is equal to 560 nm, and its variation with temperature, if it exists in the considered zone, is less than the experimental error. At 20 °C and 150 ns, the value of the product [Formula: see text] of the yield of es− and the molar extinction coefficient at λmax is 2.55 × 104 molecule/(M cm 100 eV). In the context of this work, we have compared results obtained with both a linear accelerator and a Febetron, a comparison that has allowed us to evaluate the influence of variations of the dose per pulse and to extend measurements to short times. In the case of experiments performed with the linear accelerator, es− is found to decay at all wavelengths by a first-order reaction (or by a pseudo-first-order reaction) with an activation energy of ~45 kJ mol−1. By contrast, kinetic curves obtained with the Febetron seem to show a competition in which a second-order law is followed at short times. The fact that the shape of the spectra seems to vary as a function of the dose per pulse indicates the possible intervention of another species whose formation is favored by the use of high radiation doses. In other respects, the kinetics of electron solvation does not seem to be controlled by the viscosity of the solvent in our experimental conditions. Keywords: liquid hexane-1,2,6-triol, pulse radiolysis, linear accelerator and Febetron, solvated electron, optical absorption spectrum, kinetic properties, solvent viscosity, dose and temperature effects.


2016 ◽  
Vol 18 (6) ◽  
pp. 4652-4658 ◽  
Author(s):  
Maurice de Koning ◽  
Adalberto Fazzio ◽  
Antônio José Roque da Silva ◽  
Alex Antonelli

The water-solvated excess electron (EE) is a key chemical agent whose hallmark signature, its asymmetric optical absorption spectrum, continues to be a topic of debate.


1991 ◽  
Vol 95 (15) ◽  
pp. 5749-5753 ◽  
Author(s):  
Halina Abramczyk ◽  
Jerzy Kroh

Sign in / Sign up

Export Citation Format

Share Document