CdS/Metallic Mo Hybrid Photocatalysts with Highly Active Interfacial Mo–O–S Active Sites for Efficient Photocatalytic Hydrogen Evolution under Visible Light

2020 ◽  
Vol 124 (35) ◽  
pp. 18911-18919
Author(s):  
Lei Tian ◽  
Lijuan Yue ◽  
Fang Wang ◽  
Shixiong Min ◽  
Zhengguo Zhang
RSC Advances ◽  
2019 ◽  
Vol 9 (56) ◽  
pp. 32674-32682 ◽  
Author(s):  
Shanshan Li ◽  
Chun Hu ◽  
Yannan Peng ◽  
Zhihong Chen

Integration of a nanostructure design with a sub-bandgap enhances the photocatalytic H2 production activity of g-C3N4via facilitating separation of photogenerated charges while simultaneously increasing the active sites and light harvesting ability.


2018 ◽  
Vol 8 (5) ◽  
pp. 1375-1382 ◽  
Author(s):  
Junying Liu ◽  
Wenjian Fang ◽  
Zhidong Wei ◽  
Zhen Qin ◽  
Zhi Jiang ◽  
...  

Metallic 1T-LixMoS2 is an effective co-catalyst for photocatalytic hydrogen evolution over ZnIn2S4 because of its high electrical conductivity and high densities of active sites.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


2020 ◽  
Vol 10 (6) ◽  
pp. 1609-1618 ◽  
Author(s):  
Chao Zhang ◽  
Jiandong Liu ◽  
Xingliang Liu ◽  
Shiai Xu

Reaction mechanism for the higher photocatalytic performance of H2 production of g-C3N4NSs/TC1 under visible light irradiation (λ ≥ 400 nm).


Sign in / Sign up

Export Citation Format

Share Document