Enhancement of Visible Light Photocatalytic Activity of SrTiO3: A Hybrid Density Functional Study

2015 ◽  
Vol 119 (41) ◽  
pp. 23503-23514 ◽  
Author(s):  
Brindaban Modak ◽  
Swapan K. Ghosh
2015 ◽  
Vol 17 (43) ◽  
pp. 28743-28753 ◽  
Author(s):  
Guangzhao Wang ◽  
Hong Chen ◽  
Yang Li ◽  
Anlong Kuang ◽  
Hongkuan Yuan ◽  
...  

To improve the photocatalytic performance of KNbO3 for the decomposition of water into hydrogen and oxygen, the electronic structure of KNbO3 should be modified to have a suitable bandgap with band edge positions straddling the water redox level so as to sufficiently absorb visible light.


2017 ◽  
Vol 41 (16) ◽  
pp. 8140-8155 ◽  
Author(s):  
Francis Opoku ◽  
Krishna Kuben Govender ◽  
Cornelia Gertina Catharina Elizabeth van Sittert ◽  
Penny Poomani Govender

A hybrid ternary ZnS/GO/ZnO(001) system achieved enough driving force for splitting water into H2 gas.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Yan Gong ◽  
Hongtao Yu ◽  
Xie Quan

Recently a novel sliver oxide Ag3AsO4has been found to be an excellent photocatalyst with strong oxidation capability for pollutant degradation under visible light. But the origin of its high visible light photocatalytic activity was unclear which hindered further research of Ag3AsO4. For clarifying that, the electronic structure and optical properties of Ag3AsO4have been analyzed by the hybrid density functional method. The results reveal that the Ag3AsO4presents a narrow band gap with strong oxidation ability of the valence bands maximum edge and the highly delocalized charge distribution of the conduction bands minimum is beneficial for the carriers transfer to surface to participate in the photocatalytic reaction. These results provide clear explanations of the excellent visible light photocatalytic performance of the Ag3AsO4from microscopic aspect. And it is significant to design novel materials with high photocatalytic performance.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1163
Author(s):  
Lan-li Chen ◽  
Bao-gai Zhai ◽  
Yuan Ming Huang

It is significant to render visible-light photocatalytic activity to undoped ZnO nanostructures via intrinsic defect engineering. In this work, undoped ZnO nanocrystals were derived via co-precipitation synthesis. The resulting ZnO nanocrystals were characterized by means of X-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy, and ultraviolet-visible absorption spectroscopy, respectively. The visible-light photocatalytic activity of the products were characterized by monitoring the decomposition of methyl orange in water under visible-light illumination of a 300 W halogen lamp. It is found that undoped ZnO nanocrystals exhibit visible-light photocatalytic activity with their first-order rate constant up to 4.6 × 10−3 min−1. Density functional calculations show that oxygen vacancies create deep energy levels at EV + 0.76 eV in the bandgap of ZnO. In conjunction with the density functional calculations, the photocatalytic degradation of methyl orange under visible-light irradiation provides direct evidence that oxygen vacancies in ZnO nanocrystals yield the visible-light photocatalytic activity. Our results demonstrate that visible-light photocatalytic activity can be endowed to undoped ZnO nanocrystals by manipulating the intrinsic defects in ZnO. Intrinsic defect-modulated ZnO photocatalysts thus represent a powerful configuration for further development toward visible-light responsive photocatalysis.


ChemPhysChem ◽  
2016 ◽  
Vol 17 (4) ◽  
pp. 489-499 ◽  
Author(s):  
Guang-Zhao Wang ◽  
Hong Chen ◽  
Gang Wu ◽  
An-Long Kuang ◽  
Hong-Kuang Yuan

2013 ◽  
Vol 746 ◽  
pp. 400-405 ◽  
Author(s):  
Zong Bao Li ◽  
Xia Wang

The large intrinsic band gap in TiO2has hindered severely its potential application for visible-light irradiation, while anion doping has led to decreases in visible-light photocatalytic activity in spite of narrowing the host band gap. In this study, we have used cation-passivated codoping of (C, F), (C, 2F) and (2C, F) to modify the band edges of anatase TiO2to extend absorption to longer visible-light wavelegenths using the density functional theory based on GGA + U method. The results indicate that the codoping of C/F=1/1 cases have much more efficient and stable photocatalyst than pristine one and the others, which narrow the band gaps and realize the visible-light response activities.


Sign in / Sign up

Export Citation Format

Share Document