Density Functional Theory Investigations of Ferrocene-Terminated Self-Assembled Monolayers: Electronic State Changes Induced by Electric Dipole Field of Coadsorbed Species

2016 ◽  
Vol 120 (16) ◽  
pp. 8684-8692 ◽  
Author(s):  
Yasuyuki Yokota ◽  
Sumito Akiyama ◽  
Yukio Kaneda ◽  
Akihito Imanishi ◽  
Kouji Inagaki ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. P. Andersson

Using sound physical principles we modify the DFT-D2 atom pairwise semiempirical dispersion correction to density functional theory to work for metallic systems and in particular self-assembled monolayers of thiols on gold surfaces. We test our approximation for two functionals PBE-D and revPBE-D for lattice parameters and cohesive energies for Ni, Pd, Pt, Cu, Ag, and Au, adsorption energies of CO on (111) surfaces of Pd, Pt, Cu, Ag, and Au, and adsorption energy of benzene on Ag(111) and Au(111). Agreement with experimental data is substantially improved. We apply the method to self-assembled monolayers of alkanethiols on Au(111) and find reasonable agreement for PBE-D and revPBE-D for both physisorption of n-alkanethiols as well as dissociative chemisorption of dimethyl disulfide as an Au-adatom-dithiolate complex. By modifying the C6 coefficient for Au, we obtain quantitative agreement for physisorption and chemisorption for both PBE-D and revPBE-D using the same set of parameters. Our results confirm that inclusion of dispersion forces is crucial for any quantitative analysis of the thiol and thiolate bonds to the gold surface using quantum chemical calculations.


2016 ◽  
Vol 18 (18) ◽  
pp. 12920-12927 ◽  
Author(s):  
Ersen Mete ◽  
Ayşen Yılmaz ◽  
Mehmet Fatih Danışman

Isolated and full monolayer adsorption of various carboranethiol (C2B10H12S) isomers on the gold(111) surface has been investigated using both the standard and van der Waals density functional theory calculations.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (9) ◽  
pp. 681-687 ◽  
Author(s):  
Nicola Marzari

AbstractThe development of materials and devices at the nanoscale presents great challenges, from synthesis to assembly to characterization. Often, progress can only be made by complementing experimental work with electronic-structure modeling, harnessing the efficiency, predictive power, and atomic resolution of density functional theory to describe molecular architectures exactly at those scales (hundreds or thousands of atoms) where the most promising and undiscovered properties are to be engineered. Some of the next-generation technologies that will benefit first from first-principles simulations encompass areas as diverse as energy and information storage and retrieval, detection and sensing of biological and foreign contaminants, nanostructured catalysts, nanomechanical devices, hybrid organic-inorganic and biologically inspired materials, and novel computer technologies based on integrated optical and electronic platforms. This article reviews some of the recent successes and insights gained by electronic-structure modeling, ranging from carbon nanotubes to semiconducting nanoparticles, quantum dots, and self-assembled monolayers.


2012 ◽  
Vol 116 (13) ◽  
pp. 7374-7379 ◽  
Author(s):  
Lara Ferrighi ◽  
Yun-xiang Pan ◽  
Henrik Grönbeck ◽  
Bjørk Hammer

2013 ◽  
Vol 27 (15) ◽  
pp. 1362017
Author(s):  
LIUXI TAN ◽  
RUI GUO ◽  
SHIZHONG YANG ◽  
EBRAHIM KHOSRAVI ◽  
GUANG-LIN ZHAO ◽  
...  

First principles density functional theory — based (GW) method — was used to simulate the electronic structure of the novel iron-based superconductor K 0.8 Fe 2 Se 2. The calculated band gap of K 0.8 Fe 2 Se 2 at the Γ point is 0.15 eV, which is significantly lower than the 0.61 eV of vacancy free crystal KFe 2 Se 2. The d-orbital of Fe atom is overlapped with the p-orbital of Se atom. Charge density analysis shows strong lattice distortion and vacancy related electric dipole and quadruple near the K vacancy. The reflectivity is anisotropic in three coordinate directions.


Sign in / Sign up

Export Citation Format

Share Document