nanostructured catalysts
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 72)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kootak Hong ◽  
Jun Min Suh ◽  
Tae Hyung Lee ◽  
Sung Hwan Cho ◽  
Seeram Ramakrishna ◽  
...  

AbstractDirect consideration for both, the catalytically active species and the host materials provides highly efficient strategies for the architecture design of nanostructured catalysts. The conventional wet chemical methods have limitations in achieving such unique layer-by-layer design possessing one body framework with many catalyst parts. Herein, an innovative physical method is presented that allows the well-regulated architecture design for an array of functional nanocatalysts as exemplified by layer-by-layer adornment of Pd nanoparticles (NPs) on the highly arrayed silica nanorods. This spatially confined catalyst exhibits excellent efficiency for the hydrogenation of nitroarenes and widely deployed Suzuki cross-coupling reactions; their facile separation from the reaction mixtures is easily accomplished due to the monolithic structure. The generality of this method for the introduction of other metal source has also been demonstrated with Au NPs. This pioneering effort highlights the feasibility of physically controlled architecture design of nanostructured catalysts which may stimulate further studies in the general domain of the heterogeneous catalytic transformations.


2022 ◽  
Author(s):  
Jing Zhang ◽  
Xuan Li ◽  
Jian Guo ◽  
Gengheng Zhou ◽  
Xiang Li ◽  
...  

Herein, we prepare a novel hollow composite fiber via a wet-spinning process to overcome separation and recovery problems of nanostructured catalysts. The obtained TiO2/TPU fiber showed excellent mechanical and photocatalytic...


2021 ◽  
Vol 21 (12) ◽  
pp. 6160-6167
Author(s):  
Sakthivel Kumaravel ◽  
Sivakumar Thiripuranthagan ◽  
Elangovan Erusappan ◽  
Aishwarya Sivakumar ◽  
Saranraj Kumaravel ◽  
...  

Pristine TiO2 and x% Ru/TiO2 catalysts with different wt.% of Ru (x%= 1.5%, 2%, 2.5% and 3%) were synthesized using sol–gel and simple impregnation methods. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), High-resolution transmission electron microscope (HR-TEM), Inductively coupled plasma-optical emission spectrometry (ICP-OES) and Thermogravimetry/Differential thermal analysis (TG/DTA) were used to study the physicochemical and morphological properties. The XRD patterns of the as-prepared pristine TiO2 catalyst showed high crystalline nature. The HR-TEM images revealed that the Ru nanoparticles (NPs) were evenly dispersed on the TiO2 surface. The prepared catalysts were evaluated for their catalytic activity towards the liquid phase hydrogenation of ethyl levulinate under mild reaction conditions (ambient H2 pressure). Among the various catalysts, 2.5% Ru/TiO2 catalyst showed the maximum catalytic activity of 79% ethyl levulinate (EL) conversion with 82% selectivity of γ-valerolactone (GVL). The recyclability test revealed that the most active 2.5% Ru/TiO2 also showed the highest stability of the catalyst under optimized experimental conditions.


Author(s):  
Parisa Shafiee ◽  
Seyed Mehdi Alavi ◽  
Mehran Rezaei ◽  
Farzad Jokar

2021 ◽  
pp. 97-107
Author(s):  
Márcia Cristina dos Santos ◽  
Tania Maria Basegio ◽  
Luís António da Cruz Tarelho ◽  
Carlos Pérez Bergmann

Sign in / Sign up

Export Citation Format

Share Document