Sulfur-Doped Mesoporous Carbon Nitride Decorated with Cu Particles for Efficient Photocatalytic Degradation under Visible-Light Irradiation

2017 ◽  
Vol 121 (35) ◽  
pp. 19239-19253 ◽  
Author(s):  
Milad Jourshabani ◽  
Zahra Shariatinia ◽  
Alireza Badiei
2014 ◽  
Vol 925 ◽  
pp. 130-134 ◽  
Author(s):  
Shu Chin Lee ◽  
Hendrik O. Lintang ◽  
Salasiah Endud ◽  
Leny Yuliati

In this work, we reported the photocatalytic activities of carbon nitride (CN) materials for removal of various aromatic organic pollutants under visible light irradiation. Both bulk carbon nitride (BCN) and mesoporous carbon nitride (MCN) were prepared similarly through thermal polymerization of urea precursor, except that the mesoporous structure was generated onto the MCN via hard template approach using silica nanoparticles. Successful preparations of both BCN and MCN were suggested from various characterization techniques using XRD, DR UV-Visible spectroscopy, nitrogen adsorption-desorption analyzer, and TEM. The prepared BCN and MCN were tested for removal of aromatic organic pollutants, which were benzene, phenol and salicylic acid under visible light irradiation. Both BCN and MCN did not exhibit any photocatalytic activities in the removal of benzene, but active for removals of phenol and salicylic acid. The structure stability and the presence of electron donating group on the organic pollutants were proposed to affect the photocatalytic removal reactions. Owing to the larger BET specific surface area, MCN showed much higher photocatalytic activity than the BCN for removal of phenol and salicylic acid.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


2014 ◽  
Vol 807 ◽  
pp. 101-113 ◽  
Author(s):  
J. Theerthagiri ◽  
R.A. Senthil ◽  
J. Madhavan ◽  
B. Neppolian

The graphitic carbon nitride (g-C3N4) materials have been synthesized from nitrogen rich precursors such as urea and thiourea by directly heating at 520 °C for 2 h. The as-synthesized carbon nitride samples were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) and particle size analysis. The photoelectrochemical measurements were performed using several on-off cycles under visible-light irradiation. The x-ray diffraction peak is broader which indicates the fine powder nature of the synthesized materials. The estimated crystallite size of carbon nitrides synthesized from urea (U-CN) and thiourea (T-CN) are 4.0 and 4.4 nm respectively. The particle size of U-CN and T-CN were analysed by particle size analyser and were found to be 57.3 and 273.3 nm respectively. The photocatalytic activity for the degradation of the textile dye namely, direct red-81 (DR81) using these carbon nitrides were carried out under visible light irradiation. In the present investigation, a comparison study on the carbon nitrides synthesized from cheap precursors such as urea and thiourea for the degradation of DR81 has been carried out. The results inferred that U-CN exhibited higher photocatalytic activity than T-CN. The photoelectrochemical studies confirmed that the (e--h+) charge carrier separation is more efficient in U-CN than that of T-CN and therefore showed high photocatalytic degradation. Further, the smaller particle size of U-CN is also responsible for the observed degradation trend.


Sign in / Sign up

Export Citation Format

Share Document