Density Functional Theory plus Hubbard U Study of the Segregation of Pt to the CeO2–x Grain Boundary

Nano Letters ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 1668-1677 ◽  
Author(s):  
Guoli Zhou ◽  
Pan Li ◽  
Qingmin Ma ◽  
Zhixue Tian ◽  
Ying Liu
Author(s):  
Shehab Shousha ◽  
Sarah Khalil ◽  
Mostafa Youssef

This paper studies comprehensively the defect chemistry and cation diffusion in α-Fe2O3. Defect formation energies and migration barriers are calculated using density functional theory with a theoretically calibrated Hubbard U...


2007 ◽  
Vol 556-557 ◽  
pp. 493-496 ◽  
Author(s):  
Alexander Mattausch ◽  
T. Dannecker ◽  
Oleg Pankratov

Using density functional theory, we investigate the 6H-SiC{0001} surfaces in the unreconstructed 1 × 1 and the H-passivated configuration. The strong correlation effects of the dangling bonds at the surface are treated by spin-polarised calculations including the Hubbard-U parameter. We find that the clean surfaces are semiconducting with surface states in good agreement with experimental data. The impact of the Hubbard-U is stronger on the C-terminated face. For the H-passivated surfaces we find resonances in the valence band. The antibonding C−H state is located in the upper part of the bandgap around the ¯􀀀-point.


2021 ◽  
Vol 11 (2) ◽  
pp. 616
Author(s):  
Francesca Menescardi ◽  
Davide Ceresoli

We present a quantitative analysis of the theoretical spin density map of two ferromagnetic perovskites, YTiO3 and SrRuO3. We calculated the spin density using the standard density functional theory (DFT)+U method, where the Hubbard U correction is applied to the Ti and Ru ions, and with the pseudo-hybrid ACBN0 method, where the Hubbard U parameters are determined self-consistently. The ACBN0 calculations yielded a large value of the Hubbard U of the oxygen 2p orbitals. We also used the screened hybrid HSE06 functional, which is widely used to describe the electronic structure of oxides. We used the Quantum Theory of Atoms in Molecules (QTAIM) theory and integrated the spin density in the atomic basins instead of projecting on atomic orbitals. This way, our results can be compared to experimental reports as well as to other DFT calculations.


2020 ◽  
Vol 2 (1) ◽  
pp. 495-501 ◽  
Author(s):  
Xinru Li ◽  
Zeying Zhang ◽  
Hongbin Zhang

We present a high throughput study of the magnetic ground states for 90 transition metal dihalide monolayers TMX2 using density functional theory based on a collection of Hubbard U values.


Sign in / Sign up

Export Citation Format

Share Document