Toward a Tunable Synthetic [FeFe]-Hydrogenase H-Cluster Mimic Mediated by Perylene Monoimide Model Complexes: Insight into Molecular Structures and Electrochemical Characteristics

2018 ◽  
Vol 37 (19) ◽  
pp. 3278-3285 ◽  
Author(s):  
Hassan Abul-Futouh ◽  
Artem Skabeev ◽  
Davide Botteri ◽  
Yulian Zagranyarski ◽  
Helmar Görls ◽  
...  
2015 ◽  
Vol 21 (13) ◽  
pp. 5061-5073 ◽  
Author(s):  
Roman Goy ◽  
Luca Bertini ◽  
Helmar Görls ◽  
Luca De Gioia ◽  
Jean Talarmin ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2278
Author(s):  
Anna Micheluz ◽  
Eva Mariasole Angelin ◽  
João Almeida Lopes ◽  
Maria João Melo ◽  
Marisa Pamplona

Light is a determining factor in the discoloration of plastics, and photodegradation processes can affect the molecular structures of both the polymer and colorants. Limited studies focused on the discoloration of heritage plastics in conservation science. This work investigated the discoloration of red historical polyethylene (PE) objects colored with PR 48:2 and PR 53:1. High-density and low-density PE reference polymers, neat pigment powders, and historical samples were assessed before and after accelerated photoaging. The applied methodology provided insight into the individual light-susceptibility of polyethylenes, organic pigment lakes, and their combined effect in the photoaging of historical plastic formulations. After light exposure, both PE references and historical samples yellowed, PR53:1 faded, and PR 48:2 darkened; however, both organic pigments faded severely in the historical samples. This highlights the role played by the plastic binder likely facilitating the pigment photofading. Fourier transform infrared spectroscopy and mass spectrometry techniques—EGA-MS, PY-GC/MS, and TD-GC/MS—were successfully employed for characterizing the plastic formulations and degradation. The identification of phthalic compounds in both aged β-naphthol powders opens new venues for studies on their degradation. This work’s approach and analytical methods in studying the discoloration of historical plastics are novel, proving their efficacy, reliability, and potentiality.


2018 ◽  
Vol 140 (41) ◽  
pp. 13429-13440 ◽  
Author(s):  
Hai T. Dong ◽  
Corey J. White ◽  
Bo Zhang ◽  
Carsten Krebs ◽  
Nicolai Lehnert

2000 ◽  
Vol 09 (02) ◽  
pp. 157-182 ◽  
Author(s):  
M. KREUZER ◽  
L. MARRUCCI ◽  
D. PAPARO

In this paper we review some experimental and theoretical results on the enhancement of orientational optical nonlinearities observed in dye-doped liquids and liquid crystals. We argue that this enhancement is derived from a photoinduced modification of kinetic molecular properties. Moreover we highlight an analogy between the mechanism of this effect in nematic liquid crystals and the working principles of "molecular motors". This analogy helps us to refine the understanding of this effect and to identify the molecular parameters which play the main role. Finally we review some recent experimental results about the dependence of the optical nonlinearity enhancement on the detailed dye and host molecular structures. These results provide some insight into the light-induced phenomena taking place inside a dye molecule.


2007 ◽  
Vol 363 (1494) ◽  
pp. 1271-1281 ◽  
Author(s):  
Kristof Meelich ◽  
Curtis M Zaleski ◽  
Vincent L Pecoraro

The molecular oxygen produced in photosynthesis is generated via water oxidation at a manganese–calcium cluster called the oxygen-evolving complex (OEC). While studies in biophysics, biochemistry, and structural and molecular biology are well known to provide deeper insight into the structure and workings of this system, it is often less appreciated that biomimetic modelling provides the foundation for interpreting photosynthetic reactions. The synthesis and characterization of small model complexes, which either mimic structural features of the OEC or are capable of providing insight into the mechanism of O 2 evolution, have become a vital contributor to this scientific field. Our group has contributed to these findings in recent years through synthesis of model complexes, spectroscopic characterization of these systems and probing the reactivity in the context of water oxidation. In this article we describe how models have made significant contributions ranging from understanding the structure of the water-oxidation centre (e.g. contributions to defining a tetrameric Mn 3 Ca-cluster with a dangler Mn) to the ability to discriminate between different mechanistic proposals (e.g. showing that the Babcock scheme for water oxidation is unlikely).


Sign in / Sign up

Export Citation Format

Share Document