optical nonlinearity
Recently Published Documents


TOTAL DOCUMENTS

1797
(FIVE YEARS 269)

H-INDEX

71
(FIVE YEARS 9)

2022 ◽  
Vol 149 ◽  
pp. 107798
Author(s):  
Ruipeng Niu ◽  
Shuang Chen ◽  
Wenfa Zhou ◽  
Xingzhi Wu ◽  
Junyi Yang ◽  
...  

2022 ◽  
Vol 149 ◽  
pp. 107863
Author(s):  
Ana‐Maria Manea‐Saghin ◽  
Cosmina Andreea Marin ◽  
Carla‐Cezarina Pădurețu ◽  
François Kajzar

Nature ◽  
2022 ◽  
Author(s):  
Jun-Yi Shan ◽  
M. Ye ◽  
H. Chu ◽  
Sungmin Lee ◽  
Je-Geun Park ◽  
...  
Keyword(s):  

2022 ◽  
Vol 905 ◽  
pp. 109-114
Author(s):  
Hao Nan Hu ◽  
Jin Feng Zhou

We have prepared GexGa4S96-x glasses for x=22.5, 27, 30 and 33.3 and GexGa8S92-x for x=32, 36 and measured their linear and nonlinear optical properties. The glasses exhibit broad transmission at a wavelength range from 1 to 12 μm. The evolution of linear, nonlinear index and two-photon absorption as a function of the content of Ge, and the relationship of n2 and β with linear refractive index and optical bandgap are analyzed. While the evolution of n2 and β is closer to the prediction by Sheik-Bahae et.al for optical nonlinearity of semiconductors. Eg of Ge-Ga-S is found to vary from 2.33 to 2.99eV, and the largest nonlinear index is 1.16×10-14cm2/W at composition of Ge32Ga8S60 .


APL Materials ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 019901
Author(s):  
Valerie Yoshioka ◽  
Jian Lu ◽  
Zichen Tang ◽  
Jicheng Jin ◽  
Roy H. Olsson ◽  
...  

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Hualong Wu ◽  
Kang Zhang ◽  
Chenguang He ◽  
Longfei He ◽  
Qiao Wang ◽  
...  

Ultrawide bandgap (UWBG) semiconductor materials, with bandgaps far wider than the 3.4 eV of GaN, have attracted great attention recently. As a typical representative, wurtzite aluminum nitride (AlN) material has many advantages including high electron mobility, high breakdown voltage, high piezoelectric coefficient, high thermal conductivity, high hardness, high corrosion resistance, high chemical and thermal stability, high bulk acoustic wave velocity, prominent second-order optical nonlinearity, as well as excellent UV transparency. Therefore, it has wide application prospects in next-generation power electronic devices, energy-harvesting devices, acoustic devices, optical frequency comb, light-emitting diodes, photodetectors, and laser diodes. Due to the lack of low-cost, large-size, and high-ultraviolet-transparency native AlN substrate, however, heteroepitaxial AlN film grown on sapphire substrate is usually adopted to fabricate various devices. To realize high-performance AlN-based devices, we must first know how to obtain high-crystalline-quality and controllable AlN/sapphire templates. This review systematically summarizes the recent advances in fabricating wurtzite AlN film on (0001)-plane sapphire substrate. First, we discuss the control principles of AlN polarity, which greatly affects the surface morphology and crystalline quality of AlN, as well as the electronic and optoelectronic properties of AlN-based devices. Then, we introduce how to control threading dislocations and strain. The physical thoughts of some inspirational growth techniques are discussed in detail, and the threading dislocation density (TDD) values of AlN/sapphire grown by various growth techniques are compiled. We also introduce how to achieve high thermal conductivities in AlN films, which are comparable with those in bulk AlN. Finally, we summarize the future challenge of AlN films acting as templates and semiconductors. Due to the fast development of growth techniques and equipment, as well as the superior material properties, AlN will have wider industrial applications in the future.


2021 ◽  
Author(s):  
Yun-Chen Zhu ◽  
Ping-Xue Li ◽  
Chuan-Fei Yao ◽  
Chun-Yong Li ◽  
Wen-Hao Xiong ◽  
...  

Abstract In this paper, the influence of optical nonlinearity on combining efficiency in ultrashort pulsed fiber laser coherent combining system is investigated theoretically and experimentally. In the theoretical work, a new theoretical algorithm for the coherent combining efficiency, which can be used to quantify the spectral coherence decay induced by optical nonlineary imbalance between the sub-beams, is presented. The spectral information of the sub-beam is obtained by numerically solving the nonlinear Schrödinger equation (NLSE) in this algorithm to ensure an accurate prediction. In the experimental work, the coherent combining of two all-fiber picosecond lasers is achieved, and the influence of imbalanced optical nonlinearity on the combining efficiency is studied, which agrees with the theoretical prediction. This paper reveals the physical mechanism for the influence of optical nonlinearity on the combining efficiency, which is valuable for the coherent combining of ultrashort pulsed fiber laser beams.


Sign in / Sign up

Export Citation Format

Share Document