High Turnover Pd/C Catalyst for Nitro Group Reductions in Water. One-Pot Sequences and Syntheses of Pharmaceutical Intermediates

2021 ◽  
Author(s):  
Xiaohan Li ◽  
Ruchita R. Thakore ◽  
Balaram S. Takale ◽  
Fabrice Gallou ◽  
Bruce H. Lipshutz
Keyword(s):  
Author(s):  
Kahdijah S. Alghamdi ◽  
Nesreen S.I. Ahmed ◽  
D. Bakhotmah ◽  
Mohamed Mokhtar

Chitosan decorated copper nanoparticles catalysts (CSCuNPs) were synthesized via reduction methods utilizing green protocol. The CSCuNPs catalysts were tested for the synthesis of quinoline derivatives utilizing one-pot multicomponent reaction (MCR) under ultrasonic irradiation. The best catalyst (Cu-CS-NPs) that provided good conversion reaction yield and high turnover frequency (TOF) was characterized using FTIR, TGA, XRD, TEM and XPS techniques. Generalization of the scope of the proposed catalytic process was studied using different aldehydes. Excellent products yield and high TOF in even shorter reaction time (~5 min) was attained. Recyclability performance of the catalyst over five times re-use without detectable loss in product yield was recorded. The current method is green process utilizing environmentally benign catalyst and considered to be promising sustainable protocol for the synthesis of fine chemicals.


Synthesis ◽  
2020 ◽  
Author(s):  
Zbigniew Wróbel ◽  
Michał Tryniszewski ◽  
Robert Bujok ◽  
Roman Gańczarczyk

Tributyl- or triphenylphosphine promotes a one-pot, three-step method for the synthesis of differently substituted dibenzodiazepinones from N-aryl-2-nitroanilines. Pyridine analogues and the corresponding thiazepinones can also be formed using this method. The process involves deoxygenation of the nitro group, then formation of an iminophosphorane intermediate and its intramolecular condensation with a carboxyl group placed in the N-aryl group. The role of the carboxyl group in the formation of the iminophosphorane and the mode of cyclization are discussed.


Synlett ◽  
2020 ◽  
Author(s):  
Alexey M. Starosotnikov ◽  
Maxim A. Bastrakov ◽  
Vadim V. Kachala ◽  
Ivan V. Fedyanin ◽  
Tatyana A. Klimova ◽  
...  

AbstractA convenient process is described for the synthesis of novel thiazolo[4,5-b]pyridines fused with triazole or pyrimidine rings. The base-promoted reactions of 2-chloro-3-nitropyridines with 1,3-(S,N)-binucleophiles (triazole-5-thiols, 4-oxopyrimidine-2-thiones) resulted in nucleophilic substitution of the chlorine atom and subsequent S–N-type Smiles rearrangement followed by nucleophilic substitution of the nitro group. Reactions with pyrimidine-2-thiones were carried out as one-pot processes while, in the case of triazole-5-thiols, isolation of intermediate substitution products was found to be preferable.


BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Fereshteh Norouzi ◽  
Shahrzad Javanshir

AbstractA hybrid magnetic material γFe2O3@Sh@cu2O was easily prepared from Shilajit (Sh) decorated Fe3O4 and copper acetate. The prepared magnetic hybrid material was fully characterized using different analysis, including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), inductively coupled plasma (ICP), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) thermal gravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET). All these analysis revealed that during coating of Fe3O4@Sh using copper salt (II), synchronized redox sorption of CuII to CuI occurs at the same time as the oxidation of Fe3O4 to γFe2O3. This magnetic catalyst exhibited excellent catalytic activity for regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles via one pot three-component click reaction of sodium azide, terminal alkynes and benzyl halides in the absence of any reducing agent. High yields, short reaction time, high turnover number and frequency (TON = 3.5 * 105 and TOF = 1.0 * 106 h−1 respectively), easy separation, and efficient recycling of the catalyst are the strengths of the present method.


Author(s):  
Kahdijah S. Alghamdi ◽  
Nesreen S.I. Ahmed ◽  
D. Bakhotmah ◽  
Mohamed Mokhtar M. Mostafa

Chitosan decorated copper nanoparticles (CS/CuNPs) catalysts were synthesized via reduction methods utilizing green protocol. The CS/CuNPs hybrid catalysts were tested for the synthesis of quinoline derivatives utilizing one-pot multicomponent reaction (MCR) under ultrasonic irradiation. The best catalyst (CS/CuNPs) that provided good conversion reaction yield and high turnover frequency (TOF) was characterized using Fourier transform infrared (FTIR), Thermogravimetric analyses (TGA), X-ray diffraction (XRD), , scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. Generalization of the scope of the proposed catalytic process was studied using different aldehydes. Excellent products yield and high TOF in even shorter reaction time (~5 min) was attained. Recyclability performance of the catalyst over five times re-use without detectable loss in product yield was recorded. The current method is green process utilizing environmentally benign catalyst and considered to be promising sustainable protocol for the synthesis of fine chemicals.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7365
Author(s):  
Vasiliy M. Muzalevskiy ◽  
Zoia A. Sizova ◽  
Vladimir T. Abaev ◽  
Valentine G. Nenajdenko

The catalytic olefination reaction of 2-nitrobenzaldehydes with CF3CCl3 afforded stereoselectively trifluoromethylated ortho-nitrostyrenes in up to 88% yield. The reaction of these alkenes with pyrrolidine permits preparation of α-CF3-β-(2-nitroaryl) enamines. Subsequent one pot reduction of nitro-group by Fe-AcOH-H2O system initiated intramolecular cyclization to afford 2-CF3-indoles. Target products can be prepared in up to 85% yields. Broad synthetic scope of the reaction was shown as well as some followed up transformations of 2- CF3-indole.


Author(s):  
Kahdijah S. Alghamdi ◽  
Nesreen Ahmed ◽  
D. Bakhotmah ◽  
Mohamed Mokhtar M. Mostafa

Chitosan decorated copper nanoparticles catalysts (CSCuNPs) were synthesized via reduction methods utilizing green protocol. The CSCuNPs catalysts were tested for the synthesis of quinoline derivatives utilizing one-pot multicomponent reaction (MCR) under ultrasonic irradiation. The best catalyst (Cu-CS-NPs) that provided good conversion reaction yield and high turnover frequency (TOF) was characterized using FTIR, TGA, XRD, TEM and XPS techniques. Generalization of the scope of the proposed catalytic process was studied using different aldehydes. Excellent products yield and high TOF in even shorter reaction time (~5 min) was attained. Recyclability performance of the catalyst over five times re-use without detectable loss in product yield was recorded. The current method is green process utilizing environmentally benign catalyst and considered to be promising sustainable protocol for the synthesis of fine chemicals.


Author(s):  
Kahdijah S. Alghamdi ◽  
Nesreen S.I. Ahmed ◽  
D. Bakhotmah ◽  
Mohamed Mokhtar

Chitosan decorated copper nanoparticles catalysts (CSCuNPs) were synthesized via reduction methods utilizing green protocol. The catalytic performance of CSCuNPs were tested for one-pot multicomponent reaction (MCR) using four reactant components: aromatic aldehydes, dimedone, ammonium acetate and ethylcyanoacetate under ultrasonic irradiation. The best catalyst (Cu-CS-NPs) that provided good conversion reaction yield and high turnover frequency (TOF) utilizing a facile and fast ultrasonic process was characterized using FTIR, TGA, XRD, TEM and XPS techniques. Generalization of the scope of the proposed catalytic process was studied using different aldehydes and excellent products yields and high TOF in even shorter reaction time (5 min.) was attained. Recyclability performance of the catalyst over five times re-use without detectable loss in product yield was recorded. The current method is green process utilizing environmentally benign catalyst and considered to be promising sustainable protocol for the synthesis of fine chemicals.


2017 ◽  
Vol 8 (9) ◽  
pp. 6686-6690 ◽  
Author(s):  
Abhijnan Ray Choudhury ◽  
Madhu Sudan Manna ◽  
Santanu Mukherjee

A formal umpolung strategy is presented for the enantioselective installation of an alkenyl group with a terminal double bond at a tertiary center. This one-pot two-step sequence relies on the unique features of the nitro group, which after inverting the polarity of the alkenylating agent toward the desired bond formation, itself serves as a leaving group.


2020 ◽  
Vol 2 (1) ◽  
pp. 16
Author(s):  
Sarra Tadrent ◽  
Christophe Len

A green and sustainable approach for the production of 3-aminobenzoic acid (3-ABA) from 3-nitrobenzaldehyde promoted by NORIT GAC 12-40 as a carbonaceous bio-based material was successfully achieved in subcritical water. The process involves two successive reactions: reduction of the nitro group and oxidation of the formyl group. At 300 °C under 90 bar for 6 h, the yield of 3-ABA is 59%.


Sign in / Sign up

Export Citation Format

Share Document