terminal double bond
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

SynOpen ◽  
2022 ◽  
Vol 06 (01) ◽  
pp. 7-10
Author(s):  
Morteza Shiri ◽  
Maryam-Sadat Tonekaboni ◽  
Zahra Tanbakouchian ◽  
Soma Majedi

AbstractA base-mediated intramolecular hydroalkoxylation that was used to prepare a series of seven-membered S,O-heterocycles is described. 2-Thiopropargyl-3-hydroxymethyl quinolines were prepared starting from 2-mercaptoquinoline-3-carbaldehydes, via S-propargylation and reduction of a formyl group. Interestingly, 2-mercaptopropargyl-3-hydroxymethyl quinolines were converted into the corresponding oxathiepinoquinolines in the presence of t-BuOK. It is proposed that the S-propargyl moiety, in the presence of base, is converted into its allenyl isomer; subsequent addition of a hydroxyl group to the terminal double bond yields the 3-methyl-5H-[1,4]oxathiepino[5,6-b]quinoline in good to high yield. Notably, the procedure is adaptable to the conversion of N-propargyl indole-2-methanol into the corresponding intramolecular hydroalkoxylation product.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2104
Author(s):  
Emre Kinaci ◽  
Erde Can ◽  
John J. La Scala ◽  
Giuseppe R. Palmese

In this investigation, the terminal double bonds of the side chain epoxidized cardanol glycidyl ether (SCECGE) molecule were further epoxidized in the presence of Oxone® (potassium peroxomonosulfate) and fluorinated acetone. Regular methods for the double bond epoxidation are not effective on the terminal double bonds because of their reduced electronegativity with respect to internal double bonds. The terminal double bond functionality of the SCECGE was epoxidized to nearly 70%, increasing the epoxy functionality of SCECGE from 2.45 to 2.65 epoxies/molecule as measured using proton magnetic nuclear resonance (1H-NMR). This modified material—side chain epoxidized cardanol glycidyl ether with terminal epoxies (TE-SCECGE)—was thermally cured with cycloaliphatic curing agent 4-4′-methylenebis(cyclohexanamine) (PACM) at stoichiometry, and the cured polymer properties, such as glass transition temperature (Tg) and tensile modulus, were compared with SCECGE resin cured with PACM. The Tg of the material was increased from 52 to 69 °C as obtained via a dynamic mechanical analysis (DMA) while the tensile modulus of the material increased from 0.88 to 1.24 GPa as a result of terminal double bond epoxidation. In addition to highlighting the effects of dangling side groups in an epoxy network, this modest increase in Tg and modulus could be sufficient to significantly expand the potential uses of amine-cured cardanol-based epoxies for fiber reinforced composite applications.


Synthesis ◽  
2019 ◽  
Vol 52 (03) ◽  
pp. 399-416
Author(s):  
Chu-An Chang ◽  
Stefan Gürtzgen ◽  
Erik P. Johnson ◽  
K. Peter C. Vollhardt

The complexes CpCoL2 (Cp = C5H5; L = CO or CH2=CH2) mediate the cycloisomerizations of α,δ,ω-enynenes containing allylic ether linkages to 3-(oxacyclopentyl or cycloalkyl)furans via the intermediacy of isolable CpCo-η 4-dienes. A suggested mechanism comprises initial complexation of the triple bond and one of the double bonds, then oxidative coupling to a cobalt-2-cyclopentene, terminal double bond insertion to assemble a cobalta-4-cycloheptene, β-hydride elimination, and reductive elimination to furnish a CpCo-η 4-diene. When possible, the cascade continues through cobalt-mediated hydride shifts and dissociation of the aromatic furan ring. The outcome of a deuterium labeling experiment supports this hypothesis. The reaction exhibits variable stereoselectivity with a preference for the trans-product (or, when arrested, its syn-Me CpCo-η 4-diene precursor), but is completely regioselective in cases in which the two alkyne substituents are differentiated electronically by the presence or absence of an embedded oxygen. Regioselectivity is also attained by steric discrimination or blocking one of the two possible β-hydride elimination pathways. When furan formation is obviated by such regiocontrol, the sequence terminates in a stable CpCo-η 4-diene complex. The conversion of the cyclohexane-fused substrate methylidene-2-[5-(2-propenyloxy)-3-pentynyl]cyclohexane into mainly 1-[(1R*,3aS*,7aS*)-7a-methyloctahydroinden-1-yl]-1-ethanone demonstrates the potential utility of the method in complex synthesis.


Synthesis ◽  
2019 ◽  
Vol 51 (24) ◽  
pp. 4619-4624
Author(s):  
Ashley M. Gates ◽  
Webster L. Santos

A method for the regioselective reduction of the terminal double bond of 1,1-disubstituted allenes has been developed. In the presence of a palladium catalyst, tetrahydroxydiboron and stoichiometric water, allene semireduction proceeds in high yield to afford Z-alkenes selectively.


2017 ◽  
Vol 8 (9) ◽  
pp. 6686-6690 ◽  
Author(s):  
Abhijnan Ray Choudhury ◽  
Madhu Sudan Manna ◽  
Santanu Mukherjee

A formal umpolung strategy is presented for the enantioselective installation of an alkenyl group with a terminal double bond at a tertiary center. This one-pot two-step sequence relies on the unique features of the nitro group, which after inverting the polarity of the alkenylating agent toward the desired bond formation, itself serves as a leaving group.


2016 ◽  
Vol 11 (2) ◽  
pp. 1934578X1601100
Author(s):  
Jun Cheng ◽  
Chiaki Nakano ◽  
Guang Lu Shi ◽  
Tsutomu Hoshino

The enzymatic reactions of geranylfarnesol (8) and its acetate 9, classified as sesterterpenes (C25), using squalene-hopene cyclase (SHC) were investigated. The enzymatic reaction of 8 afforded 6/6-fused bicyclic 20, 6/6/6-fused tricyclic 21, and 6/6/6/6-fused tetracyclic compounds 22 and 23 as the main products (35% yield), whereas that of 9 afforded two 6/6/6-fused tricyclic compounds 24 and 25 in a high yield (76.3%) and a small amount (5.0%) of 26 (the acetate of 22). A significantly higher conversion of 9 indicates that the arrangement of the substrate in the reaction cavity changed. The lipophilic nature and/or the bulkiness of the acetyl group may have changed its binding with SHC, thus placing the terminal double bond of 9 in the vicinity of the DXDD motif of SHC, which is responsible for the proton attack on the double bond to initiate the polycyclization reaction. The results obtained for 8 are different to some extent than those reported by Shinozaki et al. The products obtained in this study were deprotonated compounds; however, the products reported by Shinozaki et al. were hydroxylated compounds.


2014 ◽  
Vol 18 (01n02) ◽  
pp. 123-128 ◽  
Author(s):  
Ivan S. Lonin ◽  
Andrey S. Kuzovlev ◽  
Evgeny S. Belyaev ◽  
Gelii V. Ponomarev ◽  
Oskar I. Koifman ◽  
...  

Regioselective bromination of methyl pyropheophorbide a at the C32-position of the terminal double bond has been carried out as a one-pot two-step addition/elimination process. The elimination occurs with 100% stereoselectivity and bromovinyl 4 has E-configuration of the C3-double bond. The reactivity of unsaturated bromide 4 has been evaluated in the series of the Pd -catalyzed coupling reactions.


Sign in / Sign up

Export Citation Format

Share Document