green protocol
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 84)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Vol 19 ◽  
Author(s):  
Suman Swami ◽  
Rahul Shrivastava ◽  
Neelam Sharma ◽  
Arunava Agarwala ◽  
Ved Prakash Verma ◽  
...  

Abstract: 1,5-Disubstituted tetrazoles are vital drug-like scaffold usually encountered as valuable bioisosteres of cis-amide bond. In this article, we reported synthesis of some novel medicinally relevant pyrazole centered 1,5-disubstituted tetrazoles using ultrasound irradiation via a one-pot 4-C reaction from various pyrazole originated aldehyde, amine, isocyanide, and sodium azide. All the synthesized derivatives were characterized by IR, 1H NMR, 13C NMR, spectroscopic techniques, and mass analysis. This ultrasound-assisted green protocol has several advantages like mild reaction condition, high yield, catalyst and solvent-free reaction protocol, 15 minutes reaction time and easy workup.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1482
Author(s):  
Fatemeh Rajabi ◽  
Chin Hua Chia ◽  
Mika Sillanpää ◽  
Leonid G. Voskressensky ◽  
Rafael Luque

The synthesis of esters is one of the most fundamental and significant subjects in organic chemistry and chemical industry because they are used in high-value products such as cosmetics, biofuel, pharmaceuticals, surfactants, and food ingredients. In this study, an efficient, economic, sustainable, and green protocol for oxidative esterification reaction has been developed. A one-pot direct transformation of aliphatic, aromatic, and unsaturated aldehydes into esters in the presence of oxygen has been carried out over mesoporous organosilica-supported palladium nanocatalyst (Pd-Cyt@SBA-15) under ambient conditions. Pd-Cyt@SBA-15 efficiently catalyzed selectively large-scale conversion of aldehydes into esters in high yields and large turnover numbers (TON = 98,000). Pd-Cyt@SBA-15 nanocatalyst demonstrated excellent reusability and stability and could be recycled up to ten times without loss of significant reactivity. ICP-AES analysis showed that no leaching of active palladium species occurred during the recycling process of the heterogeneous Pd-Cyt@SBA-15 nanocatalyst.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Cerile Ypolyte Woumbo ◽  
Dieudonné Kuate ◽  
Mathilde Julie Klang ◽  
Hilaire Macaire Womeni

The present study aimed at determining the optimal conditions for extraction of total phenolic compounds from soybean (Glycine max) meal, a by-product of the soybean seeds industry, using a green protocol with microwave-assisted extraction (MAE). A face-centered composite design (FCCD) was used for optimization. Based on a screening aimed to determine the factors that significantly influenced the responses, a 50% hydro-ethanolic solution was used with solvent/dry matter ratio (60/1–110/1), power (120–270 W), and time (0–10 min) as factors, while the responses studied were total phenolic and flavonoid contents. FTIR, TLC, DPPH, and FRAP anti-oxidants tests were used to characterize the extracts obtained with optimum conditions. The factors that significantly influenced both responses were the individual effect of all factors, the interaction between solvent/dry matter ratio and extraction time, the quadratic effect of solvent/dry matter ratio, and power for total phenolic content, while only the quadratic effect of power significantly influenced the flavonoid content. The highest contents of phenols (13.09 mg GAE/g) and flavonoid (7.39 mg CE/g) were obtained at 120 W for 0.16 min with a solvent/dry matter ratio of 60/1. ATR-FTIR spectra indicated the presence of polyphenolic compounds in the extract, namely flavonoids. TLC indicated the presence of at least nine compounds in the extract, among which catechin and quercetin were identified with respective Rf of 0.98 and 0.93. DPPH assay showed the anti-oxidant capacity for the extract with an IC50 of 194.98 µg/ml. RSM permitted us to develop a green protocol for maximum extraction of polyphenols from soybean seeds waste using less solvent, low power, and a reduced time in MAE.


2021 ◽  
Vol 11 (22) ◽  
pp. 10983
Author(s):  
Antonella Satira ◽  
Emilia Paone ◽  
Viviana Bressi ◽  
Daniela Iannazzo ◽  
Federica Marra ◽  
...  

In this study, a simple and green protocol to obtain hydrochar and high-added value products, mainly 5-hydroxymethylfurfural (5-HMF), furfural (FU), levulinic acid (LA) and alkyl levulinates, by using the hydrothermal carbonization (HTC) of orange peel waste (OPW) is presented. Process variables, such as reaction temperature (180–300 °C), reaction time (60–300 min), biomass:water ratio and initial pH were investigated in order to find the optimum conditions that maximize both the yields of solid hydrochar and 5-HMF and levulinates in the bio-oil. Data obtained evidence that the highest yield of hydrochar is obtained at a 210 °C reaction temperature, 180 min residence time, 6/1 w/w orange peel waste to water ratio and a 3.6 initial pH. The bio-products distribution strongly depends on the applied reaction conditions. Overall, 180 °C was found to be the best reaction temperature that maximizes the production of furfural and 5-HMF in the presence of pure water as a reaction medium.


2021 ◽  
Author(s):  
Zahra Souri ◽  
Mahmood Masoudi Khoram ◽  
Davood Nematollahi ◽  
Mohammad Mazloum-Ardakani ◽  
Hojjat Alizadeh

Abstract Electrochemical oxidation of imipramine (IMP) has been studied in aqueous solutions by cyclic voltammetry and controlled-potential coulometry techniques. Our voltammetric results show a complex behavior for oxidation of IMP at different pH values. In this study, we focused our attention on the electrochemical oxidation of IMP at a pH of about 5. Under these conditions, our results show that the oxidation of IMP leads to the formation of a unique dimer of IMP (DIMP). The structure of synthesized dimer is fully characterized by UV-visible, FTIR, 1H NMR, 13C NMR and mass spectrometry techniques. It seems that the first step in the oxidation of IMP is the cleavage of the alkyl group (formation of IMPH). After this, a domino oxidation-hydroxylation-dimerization-oxidation reaction, converts IMPH to (E)-10,10',11,11'-tetrahydro-[2,2'-bidibenzo[b,f]azepinylidene]-1,1'(5H,5'H)-dione (DIMP). The synthesis of DIMP is performed in an aqueous solution under mild conditions, without the need for any catalyst or oxidant. Based on our electrochemical findings as well as the identification of the final product, a possible reaction mechanism for IMP oxidation has been proposed. Conjugated double bonds in the DIMP structure cause the compound to become colored with sufficient fluorescence activity (excitation wave-length 535 nm and emission wave-length 625 nm). Moreover, DIMP has been evaluated for in vitro antibacterial. The antibacterial tests indicated that DIMP showed good antibacterial performance against all examined gram-positive and gram-negative bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Shigella sonnei).


2021 ◽  
Vol 18 ◽  
Author(s):  
Santosh Rangnath Deshmukh ◽  
Archana Subhash Nalkar ◽  
Shankar Ramchandra Thopate

: An efficient and green protocol has been introduced for the synthesis of benzimidazole derivatives using a pyruvic acid catalyst in the presence of water. Pyruvic acid catalyses the reaction of aromatic aldehydes with o-phenylenediamine efficiently, and products were obtained in good to excellent yields under sonication (50 oC) or under conventional heating (50 oC). The advantages of this synthetic methodology are the use of eco-friendly, commercially cheap, biodegradable catalyst, metal-free and Lewis acid-free mild reaction conditions with excellent yields, short reaction times, and compatible with a wide range of electronically diverse substrates. Pyruvic acid in water as a catalyst under ultrasound irradiation can be a better alternative to synthesize benzimidazole derivatives than some of the traditional methods.


2021 ◽  
Author(s):  
Negin Rostami ◽  
Mohammad G Dekamin ◽  
Ehsan Valiey ◽  
Hamidreza FaniMoghadam

Abstract In this study, the new asparagine grafted on the EDTA-modified Fe3O4@SiO2 core-shell (Fe3O4@SiO2-APTS-EDTA-asparagine) magnetic nanoparticles were prepared and their structures were properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques such as FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The Fe3O4@SiO2-APTS-EDTA-asparagine core-shell nanomaterial was examined, as a highly efficient multifunctional and recoverable nanocatalyst, for the synthesis of a wide range of nitrogen-containing heterocycles and biologically-active 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. It was proved that Fe3O4@SiO2-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermally and magnetic stability, specific morphology and acidic sites, can activate the Biginelli reaction components. Moreover, environmental-friendliness and nontoxic nature properties of the catalyst, cost effectiveness, low catalyst loading, easy separation of the catalyst from products and short time of reaction are some of the remarkable advantages of this green protocol.


Sign in / Sign up

Export Citation Format

Share Document