Double-Exchange Bias Modulation under Horizontal and Perpendicular Field Directions by 3D Nanocomposite Design

Author(s):  
Jijie Huang ◽  
Di Zhang ◽  
Juncheng Liu ◽  
Hongyi Dou ◽  
Haiyan Wang
Pramana ◽  
2013 ◽  
Vol 80 (4) ◽  
pp. 701-711 ◽  
Author(s):  
AMITESH PAUL ◽  
S MATTAUCH

2017 ◽  
Vol 95 (10) ◽  
Author(s):  
B. Hebler ◽  
P. Reinhardt ◽  
G. L. Katona ◽  
O. Hellwig ◽  
M. Albrecht

2017 ◽  
Vol 53 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Natalia Rinaldi-Montes ◽  
Xavi Marti ◽  
Jesus A. Blanco ◽  
Pedro Gorria ◽  
Antonio B. Fuertes ◽  
...  

1997 ◽  
Vol 90 (3) ◽  
pp. 445-463 ◽  
Author(s):  
M. CZERWINSKI ◽  
J. DĄBROWSKI

2001 ◽  
Vol 171 (2) ◽  
pp. 121 ◽  
Author(s):  
Yurii A. Izyumov ◽  
Yu.N. Skryabin

2020 ◽  
Author(s):  
Jesse Park ◽  
Brianna Collins ◽  
Lucy Darago ◽  
Tomce Runcevski ◽  
Michael Aubrey ◽  
...  

<b>Materials that combine magnetic order with other desirable physical attributes offer to revolutionize our energy landscape. Indeed, such materials could find transformative applications in spintronics, quantum sensing, low-density magnets, and gas separations. As a result, efforts to design multifunctional magnetic materials have recently moved beyond traditional solid-state materials to metal–organic solids. Among these, metal–organic frameworks in particular bear structures that offer intrinsic porosity, vast chemical and structural programmability, and tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating strong magnetic exchange in extended metal–organic solids. Here, we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at <i>T</i><sub>C</sub> = 225 K in a mixed-valence chromium(II/III) triazolate compound, representing the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism is shown to proceed via a double-exchange mechanism, the first such observation in any metal–organic material. Critically, this mechanism results in variable-temperature conductivity with barrierless charge transport below <i>T</i><sub>C</sub> and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. Taken together, the insights gleaned from these results are expected to provide a blueprint for the design and synthesis of porous materials with synergistic high-temperature magnetic and charge transport properties. </b>


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


Sign in / Sign up

Export Citation Format

Share Document