Prediction of the Wetting Behavior of Active and Hole-Transport Layers for Printed Flexible Electronic Devices Using Molecular Dynamics Simulations

2017 ◽  
Vol 9 (22) ◽  
pp. 19269-19277 ◽  
Author(s):  
Rahul Bhowmik ◽  
Rajiv J. Berry ◽  
Michael F. Durstock ◽  
Benjamin J. Leever
2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
S. K. Joshi ◽  
Kailash Pandey ◽  
Sanjeev K. Singh ◽  
Santosh Dubey

Metallic nanowires show great potential for applications in miniaturization of electronic devices due to their extraordinary mechanical strength and electrical properties. Experimental investigations of these properties are difficult due to their size and complications in performing experiments at such length scales. Computational techniques based on classical molecular dynamics simulations (using LAMMPS) provide an effective mean to understand the mechanical deformation behaviour of such nanowires with considerable accuracy and predictability. In the present investigation, we have discussed the deformation behaviour of Au nanowires due to tensile loading using classical molecular dynamics simulations (LAMMPS). The effect of strain rate and temperature on the yield strength of the nanowire has been studied in detail. The deformation mechanisms have also been discussed.


2020 ◽  
Author(s):  
Maryam Reisjalali ◽  
Jose Javier Burgos Marmol ◽  
Alessandro Troisi

High performing organic semiconducting polymers show great potentials for use in electronic devices which is greatly dependent on the material crystallinity and packing. A series of short oligomers of the diketopyrrolopyrrole (DPP)-based materials that have shown to have high charge mobility are studied to understand the local structuring at atomic level for these materials. The simulations show that the tendency for this material class to form aggregates is driven by the interaction between DPP fragments, but this is modulated by the other conjugated fragments of the materials which afect the rigidity of the polymer and the ability to form aggregates of larger size.<br>


2020 ◽  
Author(s):  
Maryam Reisjalali ◽  
Jose Javier Burgos Marmol ◽  
Alessandro Troisi

High performing organic semiconducting polymers show great potentials for use in electronic devices which is greatly dependent on the material crystallinity and packing. A series of short oligomers of the diketopyrrolopyrrole (DPP)-based materials that have shown to have high charge mobility are studied to understand the local structuring at atomic level for these materials. The simulations show that the tendency for this material class to form aggregates is driven by the interaction between DPP fragments, but this is modulated by the other conjugated fragments of the materials which afect the rigidity of the polymer and the ability to form aggregates of larger size.<br>


Sign in / Sign up

Export Citation Format

Share Document