au nanowires
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 49)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Jialong Yu ◽  
Weiyu Wang ◽  
Shumin Li ◽  
Beibei Yu ◽  
Hongyu Chen ◽  
...  

Seaweed-like Au nanowires were synthesized without any nanoparticle seeds. The amino silcane coupling agent 3-aminopropyltriethoxysilane was used to form the active surface on Au substrate to facilitate one dimensional growth....


2021 ◽  
Vol 305 ◽  
pp. 130823
Author(s):  
Jin Wang ◽  
Xiang Zhang ◽  
Mengmeng Zhang ◽  
Peina Zhang ◽  
Yahui Song ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3262
Author(s):  
Youngdong Yoo ◽  
Minjung Kim ◽  
Bongsoo Kim

In this study, we fabricated three-dimensional (3D) hierarchical plasmo-photonic nanoarchitectures by epitaxially integrating semiconducting zinc oxide (ZnO) nanowires with vertically oriented plasmonic gold (Au) and silver (Ag) nanoplatforms and investigated their growth mechanisms in detail. We synthesized 3D hierarchical Au–ZnO nanostructures via a vapor–solid mechanism leading to the epitaxial growth of ZnO nanowires on vertically oriented single-crystalline Au nanowires on a strontium titanate (SrTiO3) substrate. The elongated half-octahedral Au nanowires with a rhombus cross-section were transformed into thermodynamically stable elongated cuboctahedral Au nanowires with a hexagonal cross-section during the reaction. After the transformation, ZnO thin films with six twinned domains were formed on the side planes of the elongated cuboctahedral Au nanowire trunks, and six ZnO nanowire branches were grown on the ZnO thin films. Further, 3D hierarchical Ag–ZnO nanostructures were obtained via the same vapor–solid mechanism leading to the epitaxial growth of ZnO nanowires on vertically oriented Ag nanoplates on an aluminum oxide (Al2O3) substrate. Therefore, the growth mechanism developed herein can be generally employed to fabricate 3D hierarchical plasmo-photonic nanoarchitectures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2825
Author(s):  
Jing Chen ◽  
Guohua Wu ◽  
Ping Gu ◽  
Yumei Tang ◽  
Chun Yang ◽  
...  

We study how to enhance the transverse magneto-optical Kerr effect (TMOKE) of ultra-thin magnetic dielectric films through the excitation of strong magnetic resonances on metasurface with a metal nanowire array stacked above a metal substrate with an ultra-thin magnetic dielectric film spacer. The plasmonic hybridizations between the Au nanowires and substrate result in magnetic resonances. The periodic arrangement of the Au nanowires can excite propagating surface plasmon polaritons (SPPs) on the metal surface. When the SPPs and the magnetic resonances hybridize, they can strongly couple to form two strong magnetic resonances, which are explained by a coupled oscillator model. Importantly, benefitting from the strong magnetic resonances, we can achieve a large TMOKE signal up to 26% in the ultra-thin magnetic dielectric film with a thickness of only 30 nm, which may find potential applications in nanophotonics, magnonics, and spintronics.


ACS Catalysis ◽  
2021 ◽  
pp. 12940-12946
Author(s):  
Yuanyuan Qian ◽  
Furui Tan ◽  
Jun Liu ◽  
Qicong Li ◽  
Kuankuan Ren ◽  
...  
Keyword(s):  

2021 ◽  
Vol 93 (34) ◽  
pp. 11736-11744
Author(s):  
Yanyan Zhu ◽  
Haoran Tang ◽  
Hao Wang ◽  
Yongxin Li

2021 ◽  
Vol 3 (5 (111)) ◽  
pp. 13-18
Author(s):  
Nadia Mohammed Jassim ◽  
Nada A. Kareem ◽  
Nada Ismael Ibrahim

Nonlinear optical signal enhancement cannot be achieved by using semiconductor materials alone. Here, we show that the recently discovered nonlinear optical behavior of plasmonic nanoparticles and hybrid nanowires enables an enhanced nonlinear optical response. A synthesis, characterization, and nonlinear optical response of synthesized hybrid nanowires structures were studied. The growth of gold nanoparticles (Au NPs) onto cadmium selenide nanowires CdSe NWs with different concentrations of gold nanoparticles coating prepared via an impregnation technique. Au nanoparticles in the CdSe/Au nanowires were uniformly dispersed on the CdSe nanowire surface. The surface morphologies and the propagation manner of hybrid nanostructures were used for transmission electron microscopy (TEM) to study the optical properties of pure and hybrid nanostructures. Dark-field scattering microscopy was used to characterize single CdSe NW and confirm the coating of hybrid CdSe/Au nanowires and characterize the concentration effect of gold nanoparticles. The dark-field scattering spectrum (DFSS) reference to the surface plasmon resonance of nearer Au NPs was observed at ca. 800 nm. By making a comparison between a single cadmium selenide with and without gold nanoparticles coating, hybrid CdSe/Au nanowires exhibit sufficient quality to produce second-harmonic generation stimulated with a pulsed, linearly polarized pump-light from a femtosecond Ti-sapphire laser. The estimated improvement of the second-harmonic generation signal is about ~ 1.8 times, ~ 5.5 times, ~ 6.9 times for low, moderate and full coating of gold nanoparticles, which was mainly due to the high quality of synthesis techniques and good dispersion of gold nanoparticles on CdSe nanowires


2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Rong Yang ◽  
Weichen Fang ◽  
Xiao Zuo ◽  
Igor M. De Rosa ◽  
Wenbo Xin

Surface-enhanced Raman scattering (SERS) is a powerful technique to detect analytes in a label-free and non-destructive way at extremely low concentrations, even down to the single-molecule level. In the present study, a series of anisotropic Au nanostructures are integrated onto the platforms of carbon nanomaterials, mainly including carbon nanotubes (CNTs) and graphene, in order to fabricate high-performance flexible SERS sensors. Sizes, dimensions, and shapes of Au nanostructures can be well controlled through this strategy, based on which Au nanowires, nanoribbons, nanoplates, nanobelts, and nanoframes are successfully deposited onto CNT films and graphene templates, respectively. Significantly enhanced plasmonic activity originates from these Au nanocrystals, which provide increased SERS signals of the analytes by many orders of magnitude, while CNT films or graphene substrates offer superior flexibility and accessibility. For instance, A flexible SERS sensor made of graphene supported Au nanoframes can detect the analyte R6G at the concentration as low as 10−9 M. The mechanism for the sensitivity enhancement could be attributed to the homogenous distribution of Au nanoframes on the graphene support as well as the strong molecule adsorption to the graphene nanoporous network.


2021 ◽  
Vol 290 ◽  
pp. 129452 ◽  
Author(s):  
J.F. Malagón G ◽  
Rafael A. Salinas ◽  
A. Galdámez ◽  
A. Orduña-Díaz ◽  
A. Dutt

Sign in / Sign up

Export Citation Format

Share Document