charge mobility
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 65)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Vladyslav Mishyn ◽  
Arien Hugo ◽  
Teresa. Rodrigues ◽  
Patrik Aspermair ◽  
Henri Happy ◽  
...  

Graphene has witnessed intensive research interest due to its remarkabe charge mobility and the efforts in the use of graphene-based field effect transistors (GFET) for sensing of biological biomarkers is...


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4354
Author(s):  
Hongtao Jiang ◽  
Junguo Gao ◽  
Xiaohong Zhang ◽  
Ning Guo

Low density polyethylene (LDPE) is a good insulating material which is widely used in cable materials due to its excellent insulation and processability. However, in the DC high voltage environment, pure polyethylene materials still face many problems, the most serious of which is space charge accumulation. The cable will inevitably be subjected to tensile stress during production, installation and operation. Therefore, it is of great significance to study the effect of stretching on the microstructure and space charge characteristics for polymers and their composites. In this paper, MMT/LDPE micro-composites, SiO2/LDPE nano-composites and MMT-SiO2/LDPE micro-nano-composites were prepared by melt blending. Mechanical stretching was carried out on pure LDPE materials and the above three kinds of composite materials. Each material was stretched according to four stretching ratios, which are 0%, 5%, 10% and 20%. The crystal morphology was observed by polarizing microscope (PLM), the crystallization perfection was tested by differential scanning calorimetry (DSC), and the space charge distribution inside each sample was measured by pulsed electro-acoustic (PEA) method. At the same time, the average charge density and apparent charge mobility for samples during depolarization were calculated and analyzed. The experimental results show that when the pure low density polyethylene sample is not stretched, its crystal structure is loose. Tensile stress can make the loose molecular chains align in LDPE and improve its crystalline structure, which is helpful to restrain the accumulation of space charge inside the sample. For MMT/LDPE, SiO2/LDPE and MMT-SiO2/LDPE composites, their internal crystal structure is compact. Stretching will destroy their original crystal structure at first, and then disorder molecular chains inside the three composite materials. With the increase of stretching ratio, the molecular chains begin to orient along the direction of force, the crystallization tends to be perfect gradually, and the space charge accumulation in samples also decreases. From the calculation results of apparent charge mobility for each sample, with the increase of stretching ratio, the trap depth and trap density inside samples firstly increased and then decreased.


2021 ◽  
Author(s):  
◽  
Aleksa Djorović

<p>Optoelectronic materials and devices, such as LEDs and solar cells, are ubiquitous in the modern, technologically driven world. Understanding the fundamental physical process in optoelectronic materials is essential for the design and development of new devices which are more efficient, cheaper, printable, as well as environmentally friendly. Two particularly important material properties for device performance are charge mobility and photoconductivity, as they increase charge separation and extraction efficiencies, and thus give specific insight into device efficiency. The best suited technique for measuring mobility and conductivity on ultrafast timescales is Terahertz spectroscopy. Terahertz spectroscopy is a non-invasive, contact-free probe of the mobility of charges in optoelectronic materials. Terahertz time-domain spectroscopy allows for the direct determination of the entire complex-valued conductivity. As a result, important optical properties such as the complex refractive index and dielectric function of a material can be measured directly. The short duration of THz pulses, on the order of 1 ps, also allows for time-resolved studies of the transient photoconductivity in optically-excited materials with sub-picosecond time resolution, i.e. Time-Resolved Teraherz Spectroscopy (TRTS). Traditionally, only the peak of the THz pulse signal is measured with TRTS, due to the time constraints of a two-delay experiment. This does not allow for frequency-resolved THz spectra. As a result, it discards a lot of the information Terahertz-TDS spectroscopy contains, as well as its advantages over other spectroscopic techniques. Frequency-resolved TRTS would allow for the calculation of transient conductivity at each pump-probe delay time and can differentiate between signals of excitons and free charge carriers. This would allow for robust interpretations of charge mobility in novel materials. However, frequency-resolved TRTS is not practically feasible in a dual-delay configuration. We develop in this thesis a novel single-shot method based on angle-to-time mapping of a rotating probe. This method is applied to build a single-shot Terahertz-TDS spectrometer. A transmissive grating applies pulse front tilt which allows for the measurement of the entire THz transient (over a 5.7 ps window) in a single laser shot on a CMOS multichannel detector, thus alleviating the need for delay stage sampling of the THz transient, and leading to a reduction of experimental time by several orders of magnitude. An optical pump excitation is incorporated to allow a time-resolved measurement (TRTS) of the entire terahertz time-domain spectrum, and thus frequency-resolved TRTS. We show qualitative agreement between the THz time domain spectra obtained with the single shot technique and the standard free-space electro-optic (EO) sampling with balanced photodiodes, with an order of magnitude increased signal sensitivity. A proof-of-concept single shot TRTS study of a Si semiconductor sample is also given, showing we are able to resolve the TRTS signal of the entire THz pulse in a single shot, in time. This technique allows us to obtain significantly more information than traditional TRTS methods without any compromise in experiment time. However we find that the implemented single shot technique seems to suffer at higher frequencies (above 2 THz), which must be addressed to confirm the viability of a full spectrum single shot TRTS experiment. Further improvements, such as tighter focusing of the THz radiation, must be made to both the single-shot spectrometer as well as to the optical pump, for a quantitative single shot measurement. However, the proof-of-concept results in this thesis prove frequency-resolved TRTS is viable by using the developed single-shot detection method. As such it directly allows a novel spectroscopic tool which can lead to new insights into charge mobilities in optoelectronic materials, and may encourage wider application of TRTS.</p>


2021 ◽  
Author(s):  
◽  
Aleksa Djorović

<p>Optoelectronic materials and devices, such as LEDs and solar cells, are ubiquitous in the modern, technologically driven world. Understanding the fundamental physical process in optoelectronic materials is essential for the design and development of new devices which are more efficient, cheaper, printable, as well as environmentally friendly. Two particularly important material properties for device performance are charge mobility and photoconductivity, as they increase charge separation and extraction efficiencies, and thus give specific insight into device efficiency. The best suited technique for measuring mobility and conductivity on ultrafast timescales is Terahertz spectroscopy. Terahertz spectroscopy is a non-invasive, contact-free probe of the mobility of charges in optoelectronic materials. Terahertz time-domain spectroscopy allows for the direct determination of the entire complex-valued conductivity. As a result, important optical properties such as the complex refractive index and dielectric function of a material can be measured directly. The short duration of THz pulses, on the order of 1 ps, also allows for time-resolved studies of the transient photoconductivity in optically-excited materials with sub-picosecond time resolution, i.e. Time-Resolved Teraherz Spectroscopy (TRTS). Traditionally, only the peak of the THz pulse signal is measured with TRTS, due to the time constraints of a two-delay experiment. This does not allow for frequency-resolved THz spectra. As a result, it discards a lot of the information Terahertz-TDS spectroscopy contains, as well as its advantages over other spectroscopic techniques. Frequency-resolved TRTS would allow for the calculation of transient conductivity at each pump-probe delay time and can differentiate between signals of excitons and free charge carriers. This would allow for robust interpretations of charge mobility in novel materials. However, frequency-resolved TRTS is not practically feasible in a dual-delay configuration. We develop in this thesis a novel single-shot method based on angle-to-time mapping of a rotating probe. This method is applied to build a single-shot Terahertz-TDS spectrometer. A transmissive grating applies pulse front tilt which allows for the measurement of the entire THz transient (over a 5.7 ps window) in a single laser shot on a CMOS multichannel detector, thus alleviating the need for delay stage sampling of the THz transient, and leading to a reduction of experimental time by several orders of magnitude. An optical pump excitation is incorporated to allow a time-resolved measurement (TRTS) of the entire terahertz time-domain spectrum, and thus frequency-resolved TRTS. We show qualitative agreement between the THz time domain spectra obtained with the single shot technique and the standard free-space electro-optic (EO) sampling with balanced photodiodes, with an order of magnitude increased signal sensitivity. A proof-of-concept single shot TRTS study of a Si semiconductor sample is also given, showing we are able to resolve the TRTS signal of the entire THz pulse in a single shot, in time. This technique allows us to obtain significantly more information than traditional TRTS methods without any compromise in experiment time. However we find that the implemented single shot technique seems to suffer at higher frequencies (above 2 THz), which must be addressed to confirm the viability of a full spectrum single shot TRTS experiment. Further improvements, such as tighter focusing of the THz radiation, must be made to both the single-shot spectrometer as well as to the optical pump, for a quantitative single shot measurement. However, the proof-of-concept results in this thesis prove frequency-resolved TRTS is viable by using the developed single-shot detection method. As such it directly allows a novel spectroscopic tool which can lead to new insights into charge mobilities in optoelectronic materials, and may encourage wider application of TRTS.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Shi-Ping Wang ◽  
Yu Wang ◽  
Fang-Yi Chen ◽  
Hai-Tao Wang ◽  
Fu-Kit Sheong ◽  
...  

Charge mobility is an essential factor of organic crystalline materials. Although many investigators have made important progress, the exact relationship between the crystal structure and carrier mobility remains to be clarified. Fortunately, a series of bis-1,3,4-oxadiazole derivatives have been successfully prepared and reported. They have similar main molecular fragments but different crystal packing modes, which provide an ideal research objective for studying the effect of molecular packing on charge mobility in organic photoelectric conversion systems. In this work, the charge mobilities of these molecules are systematically evaluated from the perspective of first-principles calculation, and the effect of a molecular overlap on orbital overlap integral and final charge carrier mobility is fully discussed. It can be seen that the small intermolecular distance (less than 6 Å) is the decisive factor to achieve high electron mobility in π stacking, and better mobility can be obtained by increasing the hole migration distance appropriately. A larger dihedral angle of anisotropy is an important point limiting the charge mobility in the herringbone arrangement. It is hoped that the correlation results between the crystal structure and mobility can assist the experimental study and provide an effective way to improve the photoelectric conversion efficiency of the organic semiconductor devices and multiple basis for multiscale material system characterization and material information.


Ionics ◽  
2021 ◽  
Author(s):  
Ren-Ping Guo ◽  
Ji-Zhou Kong ◽  
Peng Xu ◽  
Abdoul Malik Bakari ◽  
Qian-Zhi Wang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4119
Author(s):  
Gaetano Ricci ◽  
Sofia Canola ◽  
Yasi Dai ◽  
Daniele Fazzi ◽  
Fabrizia Negri

In this work, we investigate two recently synthesized naphthodithiophene diimide (NDTI) derivatives featuring promising n-type charge transport properties. We analyze the charge transport pathways and model charge mobility with the non-adiabatic hopping mechanism using the Marcus-Levich-Jortner rate constant formulation, highlighting the role of fluoroalkylated substitution in α (α-NDTI) and at the imide nitrogen (N-NDTI) position. In contrast with the experimental results, similar charge mobilities are computed for the two derivatives. However, while α-NDTI displays remarkably anisotropic mobilities with an almost one-dimensional directionality, N-NDTI sustains a more isotropic charge percolation pattern. We propose that the strong anisotropic charge transport character of α-NDTI is responsible for the modest measured charge mobility. In addition, when the role of thermally induced transfer integral fluctuations is investigated, the computed electron–phonon couplings for intermolecular sliding modes indicate that dynamic disorder effects are also more detrimental for the charge transport of α-NDTI than N-NDTI. The lower observed mobility of α-NDTI is therefore rationalized in terms of a prominent anisotropic character of the charge percolation pathways, with the additional contribution of dynamic disorder effects.


Sign in / Sign up

Export Citation Format

Share Document